
Concentration Bounds from Parallel
Repetition Theorems

by

Taylor Hornby

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

© Taylor Hornby 2018



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis contributes to the study of parallel repitition theorems and concentration
bounds for nonlocal games and quantum interactive proofs. We make the following con-
tributions:

• A lemma that is useful for converting parallel repetition theorems (bounds on the
probability of winning all instances of a nonlocal game which is being repeated in
parallel) into concentration bounds (bounds on winning a certain fraction of the
instances).

• Exponentially-decaying concentration bounds for two-player games on the uniform
distribution and k-player free games, against quantum strategies.

• A proof that given a quantum interactive proof system with parameters α (the prob-
ability with which the verifier can be convinced to accept when they should accept)
and β (the soundness error), as long as α > β, both the soundness error and com-
pleteness error can be reduced exponentially by repeating the protocol in parallel
and requiring an (α+ β)/2 fraction of the repetitions to be won. Our result requires
a log-factor more repetitions than are necessary in the classical case.

iii



Acknowledgements

This thesis documents the work I did while I was a master’s student at the University
of Waterloo under the supervision of John Watrous. I would like to thank the University of
Waterloo and the Institute for Quantum Computing for providing an excellent environment
for research and learning.

I would like to thank David R. Cheriton for funding the David R. Cheriton Graduate
Scholarship, as well as the Government of Ontario for providing the Ontario Graduate
Scholarship. These scholarships were the main source of funding for my work over the past
two years, including the work being presented here.

I would like to thank John Watrous for supervising me, for helping me learn the theory
of quantum information, and for helping me find my way to the results you will read in
this thesis. I would also like to thank him for providing me with feedback on draft versions
of this thesis. Thanks also to my readers Eric Blais and Richard Cleve for suggesting
improvements and catching some mistakes.

Lastly, I would like to thank my friends and family for the motivation and encourage-
ment they so generously provide.

iv



Table of Contents

1 Introduction 1

2 Probability Theory 4

3 Concentration Bounds for Nonlocal Games 8

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Definitions for Nonlocal Games . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Deriving Concentration Bounds from Parallel Repetition Theorems . . . . 15

3.4 Special Cases of Nonlocal Games . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Games on the Uniform Distribution and Games with Complete Support 18

3.4.2 k-Player Free Games . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Simple Parallel Repetition Reduces Error For Quantum Interactive Proofs 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Bounding Soundness Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Parallel Repetition Can Always Reduce Error . . . . . . . . . . . . . . . . 36

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



5 Conclusion 39

References 40

vi



Chapter 1

Introduction

In this thesis, we study parallel repetition of nonlocal games and interactive proofs.

Nonlocal games are played between a referee and two or more players. The referee sends
questions to the players and, without being allowed to communicate, the players must
send answers back. The referee decides whether or not the players win the game based on
the questions they sent and the answers they receive. Nonlocal games are important for
understanding entanglement. For example, the CHSH game—where two players are sent
random bits x1 and x2 and are required to return answers a1 and a2 such that a1 ⊕ a2 =
x1 · x2—can be won with probability approximately 85% by quantum-entangled players,
but only 75% by classical players. By setting up an instance of the game in real life and
observing a success rate higher than 75%, we can empirically verify that whatever the
players are doing can’t be described in a classical model.

Interactive proofs are protocols between a verifier and a prover. In the usual setup,
some string x and language L are known to both the verifier and the prover, and the
prover’s goal is to convince the verifier that x ∈ L. Typically, the verifier is bounded (say,
to polynomial time) and cannot compute membership in the language on their own. The
interactive proof protocol allows them to use the help of a cooperative-but-untrusted prover
to decide whether x ∈ L. The probability that the verifier can be fooled into thinking x ∈ L
when x /∈ L is called the soundness error, and the probability that a good prover fails to
convince the verifier that x ∈ L when it is really true that x ∈ L is called the completeness
error. Quantum interactive proofs allow the verifier and prover to be quantum-mechanical
systems and exchange quantum messages.

Nonlocal games and quantum interactive proofs are related, and one aspect common
to their study is that of reducing error through repetition. An interactive proof system’s
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verifier would like to be able to reduce the chance they are fooled by a lucky prover by
repeating the protocol. Similarly, in a physical experiment based on the CHSH game,
many repetitions will be needed to statistically see the difference between a 75% and 85%
success rate. It is well-known that error is reduced when the interactive proof protocols and
nonlocal games are repeated sequentially in time. When they are repeated sequentially, the
prover (or players) have no knowledge of what questions they will be asked in the future, so
they cannot do anything to correlate the outcomes of the repetitions. But reducing error
this way increases the number of back-and-forth trips between the prover and verifier (or
players and referee), which is not always desirable. For example, some complexity classes
like QIP[2] are based on constant-round interactive proofs. Sequential repetition cannot be
used to reduce error for these classes, since it increases the number of rounds.

Another way to potentially reduce error is to repeat the protocols in parallel. That
is, instead of repeating the protocol sequentially in time, we repeat it in space by sending
multiple questions at once and receiving multiple answers back. Of course, now there is a
possibility that the prover (or players) can somehow correlate their answers and do better
than playing each repetition independently.

When discussing results about parallel repetition, it is useful to make the distinction
between “parallel repetition theorems” and “concentration bounds.” On the one hand,
parallel repetition theorems say something akin to, “The probability of winning all of the
parallel repetitions is less than...” and on the other hand, concentration bounds1 say “The
probability of winning at least this fraction of the parallel repetitions is less than...” The
main difference is that parallel repetition theorems are only useful for reducing error when
the original protocol’s error is one-sided. For example, imagine modifying a proof system
so that it is repeated in parallel and we require the prover to win 100% of the repetitions.
In the case where the verifier should reject and the prover cannot convince the verifier to
accept an individual reptition with 100% certainty, a parallel repetition theorem would
imply that the chance that the verifier gets fooled decreases exponentially. But unless
the prover can win with 100% certainty in the case where the verifier should accept, the
probability that the verifier accepts when they should accept also decreases exponentially.
For protocols with two-sided error, we need concentration bounds to show that error can
be reduced. The idea is to modify the protocol so that it is repeated n times in parallel
and requires that at least an (α+ β)/2 fraction of the repetitions accept, where, when we

1It should be noted that our use of the term “concentration bound” differs from the meaning it usually
takes on in probability theory, i.e. an inequality bounding how concentrated a distribution is around some
value. The two ideas are related to each other, but for the remainder of this document we will take
“concentration bound” to mean results about parallel repetition taking the form described above, not the
general concept from probability theory.
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consider a single iteration of the protocol, β is the maximum probability that the verifier
can be fooled, and α is the probability that a good prover can make the verifier accept
when they should accept. The concentration bound is then used to show that, in the
case where the verifier should reject, the parallel-repetition-with-threshold-check makes
the error decrease as the number of repetitions grows larger.

In Chapter 2, we establish a lemma that relates parallel repetition theorems to con-
centration bounds. Informally, what this lemma says is that when we consider a sequence
X1, . . . Xn of probabilistic outcomes (0s or 1s), winning a certain threshold of the outcomes
is at most as likely as winning multiple (slighly lower) thresholds in equal-sized random
partitions of the outcomes. We use this lemma to essentially reduce the problem of winning
all parallel repetitions to the problem of winning a fraction of the parallel repetitions, thus
making it possible to turn a parallel repetition theorem into a concentration bound. How-
ever, the problem we are reducing is not the problem of winning all parallel repetitions of
the original protocol, it is the problem of winning all parallel repetitions of the protocol that
requires you to win a certain fraction of some parallel repetitions of the original protocol.
So, for our technique to work we need to know a parallel repetition theorem that applies to
the threshold-checking protocol. We will see some cases where this prevents our technique
from working.

We combine this technique with known parallel repetition theorems in Chapter 3 to
prove new concentration bounds for some classes of nonlocal games. Then, in Chapter 4,
we prove that simple parallel-repetition-and-threshold-checking as we described above is
sufficient to reduce error for quantum interactive proof protocols. This improves on the
results of Molina [MP12] who had previously shown that parallel-repetition-and-threshold-
checking works for α and β which are separated by a specific function. We close the gap
between α and β and show that it works for an arbitrarily-small (but constant) difference.

The results from Chapters 2, 3 and 4 are expected to appear in a joint paper with John
Watrous, which is currently in preparation.

Throughout this thesis, we will assume the reader is familiar with probability theory
(random variables, linearity of expectation, etc.), linear algebra (finite-dimensional Hilbert
spaces, operators, maps), and core concepts from quantum information theory (quantum
registers, states, density operators, measurements, and channels). We recommend the
texts [NC11] and [Wat18] as references.

We will begin by discussing probability theory in Chapter 2.
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Chapter 2

Probability Theory

This chapter introduces some facts from probability theory and proves a lemma which will
be central to our results in Chapters 3 and 4.

One probability distribution that is important to the topic of parallel repetition and
concentration bounds is the binomial distribution. With parameters n ∈ N and p ∈
[0, 1], the binomial distribution is the distribution over the number of successful outcomes
of n experiments which each have independent probability of success p. The binomial
distribution is relevant to concentration bounds because if the prover plays each of n
parallel repetitions independently, then the probability that they win any given repetition
is some probability p, and the amount of the repetitions that are won follows a binomial
distribution.

A fact about the binomial distribution that we will use in later chapters is that the
probability that there are fewer than k successful outcomes can be upper-bounded using
the Chernoff bound,

Pr[X ≤ k] ≤ exp

(
− 1

2p

(np− k)2

n

)
, (2.1)

where X is a random variable representing the number of successful outcomes.

Another distribution that will be important for proving our first lemma is the hyperge-
ometric distribution. Whereas the binomial distribution can be understood as describing
the number of green balls obtained by making n draws with replacement from a sac of N
balls, pN of which are green and (1− p)N of which are red, the hypergeometric distribu-
tion describes the expected number of green balls when drawing n balls from the same sac
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without replacement. The bound on the hypergeometric distribution corresponding to the
one we just gave for the binomial distribution is,

Pr[X ≤ (p− t)n] ≤ exp
(
−2t2n

)
, (2.2)

where X is the number of green balls drawn, n is the number of balls drawn, and p is the
fraction of balls that are green [Hoe63].

We will use this bound on the hypergeometric distribution in the proof of the following
lemma. The essense of the idea is as follows. Imagine that a quantum interactive proof
prover (or a set of nonlocal game players) has won an α + ε fraction of mn parallel rep-
etitions. We show that if the parallel repetition outcomes are randomly assigned into n
groups of m, it’s likely for all of the groups to contain a fraction at least α of winning
outcomes. The hypergeometric distribution comes in because each m-sized outcome group
can be understood as being drawn without-replacement from sac of all mn outcomes.

In this document, the notation [n] means the set {1, 2, . . . , n}.

Lemma 2.0.1. Let X1, . . . , Xmn be binary-valued random variables. Let σ : [m] × [n] →
[mn] be a function chosen uniformly at random from the set of all bijections from [m]× [n]
to [mn]. Then for any α ≥ 0 and any ε > 0,

(1− ne−2ε2m) Pr
[ 1

mn

∑
j∈[mn]

Xj ≥ α + ε
]
≤ Pr

[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ α for all ` ∈ [n]
]
. (2.3)

Proof. If α+ ε > 1, the probability on the left-hand side is zero and the lemma is trivially
true, so we can assume α + ε ≤ 1 which implies α < 1 and ε ≤ 1. Call the event that

1

mn

∑
j∈[mn]

Xj ≥ α + ε (2.4)

occurs M . For an ` ∈ [n], call the event that

1

m

∑
j∈[m]

Xσ(j,`) ≥ α (2.5)
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occurs C`. Then,

Pr
[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ α for all ` ∈ [n]
]

= Pr[C` for all `] (2.6)

= Pr[M ] Pr[C` for all `|M ] + Pr
[
M̄
]

Pr
[
C` for all `|M̄

]
(2.7)

≥ Pr[M ] Pr[C` for all `|M ] (2.8)

= Pr[M ](1− Pr
[
C̄` for some `|M

]
) (2.9)

≥ Pr[M ](1−
∑
`∈[n]

Pr
[
C̄`|M

]
). (2.10)

The last line follows from the union bound.

For any `, we can interpret the event C̄`|M as follows. That M occured means that
at least (α + ε)mn of the values of X1, . . . , Xmn are 1. Then, because σ is a random
bijection, we can think about C` as follows. We draw m bits at random from the multiset
{X1, . . . Xmn} without replacement, and C` corresponds to drawing at least αm 1s. So, C̄`
corresponds to drawing fewer than αm 1s.

Using the bound for the hypergometric distribution we gave above, replacing n with
m, p with α + ε, and t with ε, we get,

Pr
[
C̄`|M

]
≤ e−2ε2m. (2.11)

So, using this fact to continue the sequence of inequalities above, we have that,

Pr
[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ α for all ` ∈ [n]
]
≥ Pr[M ](1− ne−2ε2m), (2.12)

which completes the proof.

We use this lemma to prove concentration bounds for nonlocal games in Chapter 3
and an error-reduction theorem for quantum interactive proofs in Chapter 4. It is worth
noting that Impagliazzo and Kabanets have also also connected parallel repetition theorems
(Direct Product Theorems, in their language) with concentration bounds (Threshold Direct
Product Theorems, in their language), using a different technique [IK10]. They show that
when X1, . . . , Xn are binary-valued random variables, if there is some 0 ≤ δ ≤ 1 such that
for all subsets S ⊆ [n],

Pr[∧i∈SXi = 1] ≤ δ|S|, (2.13)
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then the sum X1 + · · ·+Xn is likely to be near its expected value. The way this gets used
is that a good enough parallel repetition theorem guarantees condition (2.13) is satisfied
by all subsets S, and then the fact that the sum likely falls near its expected value implies
a concentration bound. We did not investigate if using Impagliazzo’s and Kabanets’s
technique instead of Lemma 2.0.1 would give better concentration bounds than the ones
we are about to prove. Lemma 2.0.1 has the advantage that it can be used with parallel
repetition theorems that are too weak to show that all subsets of the random variables
satisfy condition (2.13). A disadvantage, as we will see in the next chapter, is that using
Lemma 2.0.1 to prove a concentration bound for a special class of games will require a
parallel repetition theorem for a game that is potentially outside of that special class.

In the following chapters, we will also make use of Markov’s inequality, which says that
for a random variable X,

Pr[X ≥ a] ≤ E[X]

a
, (2.14)

where E[X] is the expectation value of X.
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Chapter 3

Concentration Bounds for Nonlocal
Games

3.1 Introduction

A nonlocal game is a game played between k players and a referee. According to some
probability distribution, the referee samples k questions, one for each player, and sends
them to the players. Each player responds back to the referee with an answer. The players
win the game if the questions and answers satisfy some predicate (which is known to all of
the players).

Of course, if the players are allowed to communicate with each other, they can look at
each others’ questions and, since they know the predicate that decides whether or not they
win, they can all agree upon a winning set of responses and win with certainty (as long
as there are winning answers for the questions they were given). So, we are interested in
what happens when we restrict the players so that they cannot communicate.

There are several different ways to model the idea that the players cannot communicate.
The most basic way is to model the players as classical probabilistic algorithms, so that
each player’s answer is an independent random function of the question they are given.
This model is quite easy to analyze. If Q1, . . . Qk are the sets of questions each of the k
players could be asked, A1, . . . , Ak are the sets of possible answers each player can give,
µ(x1, x2, . . . , xk) for (x1, x2, . . . , xk) ∈ Q1×Q2×· · ·×Qk is the probability that the referee
selects the questions x1, . . . , xk, and V : Q1×· · ·Qk×A1×· · ·Ak → {0, 1} is the predicate
that decides whether or not the players win, then the probability that the players win the
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game is exactly

∑
x1,...,xk∈Q1×···×Qk

µ(x1, . . . , xk)
∑

a1,...,ak∈A1×···×Ak
V (x1,...,xk,a1,...,ak)=1

k∏
j=1

pj(xj, aj), (3.1)

where pj(x, a) is the probability player j outputs a on input x.

A more interesting model allows the players to communicate before the game begins, so
that they can agree upon a random string beforehand and use shared randomness to gain
an advantage at winning the game. Another model allows the players to exchange quantum
messages before the games begin, allowing them to take advantage of entanglement. These
two different models are important for understanding the properties of entanglement. For
example, in the well-known CHSH game, two players are given random bits x1 and x2 and
they win if they answer a1 and a2 such that a1 ⊕ a2 = x1 · x2. CHSH can be won with
at most 75% probability in the shared-randomness model, and cos2(π/8) ≈ 85% in the
shared-entanglement model. This is useful because if the referee repeats the game many
times and observes the players consistently winning more than 75% of the time, they can
conclude that the players are either entangled or doing something more than just using
shared randomness (e.g. communicating). A central research topic in the study of nonlocal
games is understanding which kinds of games can be won more easily by players who share
entanglement.

Nonlocal games are also related to multi-prover interactive proof systems. In a multi-
prover interactive proof system, there is a string x known to a verifier and multiple non-
communicating provers. The goal of the proof system is for the verifier to be convinced
that x is a member of some language L, when the verifier is not powerful enough to discover
that fact for themselves. If we consider 1-round proof protocols, where the verifier sends
messages to all of the provers and then bases their decision on the responses they receive
back, then for a fixed string x and a fixed verifier, the situation can be seen as a nonlocal
game where the provers are the players and the verifier is the referee.

Just like how with the CHSH game the referee would like to repeat the game many
times to gain more confidence that the players are entangled, a multi-prover proof verifier
would like to repeat the protocol multiple times to gain more confidence that they are not
being fooled by lucky provers. If a nonlocal game is repeated sequentially, then each run
of the game is independent and so, as long as the game cannot be won with certainty,
the probability that the players win all of the repetitions decreases exponentially. But
repeating the game sequentially increases the number of round trips between the players
and the referee. An interesting question is whether or not it is safe to repeat the game in
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parallel, by sending n questions from n repetitions of the game to the players all at once.
Against two players with shared randomness, Raz’s parallel repetition theorem implies that
the probability of winning all the repeated games decreases exponentially in the number
of parallel repetitions [Raz98]. However, for two players who share entanglement, it is
only known that the probability of winning all of the repeated games decreases inverse-
polynomially in the number of parallel repetitions [Yue16], except for some special kinds
of games like XOR games where exponentially-decaying bounds are known [CSUU08].

These “parallel repetition theorems” upper-bound the probability of winning all of
the parallel-repeated instances of the game. It is also useful to have an upper bound on
the probability of winning a certain fraction of the games. We call upper bounds on the
probability of winning fractions of parallel-repeated games “concentration bounds.” For
example, when running the CHSH game in parallel, in order to know that the players are
doing something more powerful than a shared randomness strategy, we would like to check
that they are winning some fraction above 75%, and know that as the number of parallel
repetitions increases, the probability that they will win at least that fraction decreases
exponentially. From the work of Rao, we know that such a concentration bound holds
for shared-randomness players [Rao11]. No exponentially-decaying concentration bound is
known for entanglement-sharing players, since by setting the fraction to 1, it would imply
an exponentially decaying parallel repetition theorem (which would be better than the best
known parallel repetition theorem for entangled players [Yue16]). Against non-signalling
players, who are only constrained so that their behaviour does not imply communica-
tion, exponentially-decaying parallel repetition theorems and concentration bounds are
known [LW15].

In this chapter, we develop a technique for converting parallel repetition theorems
into concentration bounds. The technique works against both shared-randomness and
entanglement-sharing players. For some kinds of games with known exponentially-decaying
parallel repetition theorems, we use our technique to prove exponentially-decaying concen-
tration bounds.

Of course, concentration bounds for some kinds of games have already been proven.
For example, an exponentially-decaying concentration bound for XOR games has been
established using methods similar to the alternative to Lemma 2.0.1 (due to Impagliazzo
and Kabanets) that we discussed in Chapter 2 [Ung09]. To the best of our knowledge, all
of the concentration bounds we prove in this chapter are new.
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3.2 Definitions for Nonlocal Games

We begin by precisely defining what a k-player nonlocal game is, and what we mean by a
(classical or quantum) strategy for playing the game.

Definition 3.2.1 (k-Player Nonlocal Games). For integers k ≥ 2, a k-player nonlocal
game G is a collection of question sets QG

1 , . . . Q
G
k (all finite and nonempty), a collection

of answer sets AG1 , . . . , A
G
k (all finite and nonempty), a probability distribution µG over

QG
1 × · · · ×QG

k , and a verification function V G : QG
1 × · · · ×QG

k ×AG1 × · · · ×AGk → {0, 1}.

Operationally, a k-player nonlocal game G is played when a referee samples questions for
each player according to µG, sends each question to the corresponding player, then receives
back answers from each player. The players win if the verification function outputs 1 and
they lose if not. If the players are allowed to communicate with each other, then they can
always win as long as there is at least one set of winning answers for the questions they were
given. To make these games “nonlocal”, we restrict the players to strategies where they
are not allowed to communicate, including the special cases of the players being classical
with shared randomness, or quantum with shared entanglement.

An (unconstrained) strategy for a nonlocal game defines a probability distribution over
the player’s answers for all possible combinations of questions they can be given.

Definition 3.2.2 (Strategy for a k-Player Nonlocal Game). A strategy S for a k-player
nonlocal game G is a function which on input x ∈ QG

1 × · · · × QG
k outputs a probability

distribution over AG1 × · · · × AGk .

A classical strategy is one that can be implemented by classical players using shared
randomness.

Definition 3.2.3 (Classical Strategy for a k-Player Nonlocal Game). A strategy S for
a k-player nonlocal game G is a classical strategy if there exist finite and nonempty sets
X1, . . . Xk, a probability distribution χ over X1 × · · · ×Xk and functions p1, . . . , pk where

pj : QG
j ×Xj → AGj , (3.2)

such that for all (x1, . . . , xk) ∈ QG
1 × · · · ×QG

k and all (a1, . . . ak) ∈ AG1 × · · · × AGk ,

Sx1,...,xk(a1, . . . , ak) = Pr[pj(xj, sj) = aj for all integers 1 ≤ j ≤ k], (3.3)

where (s1, . . . , sk) is sampled according to χ.
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In other words, a strategy S is classical when the distributions over the answers it
defines can be implemented by players who each start in a random state (which may be
correlated with the other players’ starting states) and whose answers are determined by
their starting state and the question they receive.

A quantum strategy is one where the players are allowed to share entanglement before
the game begins.

Definition 3.2.4 (Quantum Strategy for a k-Player Nonlocal Game). Let G be a k-player
nonlocal game. For all integers 1 ≤ j ≤ k and all finite-dimensional Hilbert spaces X , let

MG
j (X ) = {ν : AGj → Pos(X ) |

∑
x∈AGj

ν(x) = 1}, (3.4)

where Pos(X ) is the set of all positive semidefinite operators over X . In other words,
MG

j (X ) is the set of all quantum measurements on states in the space X with possible
outcomes AGj .

A strategy S for G is a quantum strategy if there exist finite and nonempty sets
X1, . . . , Xk, a quantum state |ψ〉 ∈ C|X1| ⊗ · · · ⊗ C|Xk|, and functions p1, . . . , pk, where

pj : QG
j →MG

j (C|Xj |) (3.5)

such that for all (x1, . . . , xk) ∈ QG
1 × · · · ×QG

k and all (a1, . . . , ak) ∈ AG1 × · · · × AGk ,

Sx1,...,xk(a1, . . . , ak) = 〈ψ|
( k⊗
j=1

ν
xj
j (aj)

)
|ψ〉 , (3.6)

where ν
xj
j = pj(xj).

In other words, S is a quantum strategy when it can be implemented by players who
start in some possibly-entangled state |ψ〉 and each arrive at their answer by performing a
question-dependent measurement on their part of |ψ〉.

Quantum strategies are at least as powerful as classical strategies, since if χ is a classical
strategy’s distribution over the players’ possible starting states X1 × · · · × Xk, then a
quantum strategy can simulate this by using the state

|ψ〉 =
∑

(s1,...,sk)∈X1×···×Xk

√
χ(s1, . . . , sk) |s1, . . . , sk〉 , (3.7)
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and then using measurements which are equivalent to performing a measurement in the
computational basis and then determining the answer from the question and the measure-
ment result the same way as the classical strategy does.

Given a strategy S for a game G, its “value” for G is the probability that it wins G.

Definition 3.2.5. Let S be a strategy for a game k-player nonlocal game G. Then,

val(S,G) =
∑

(x1,...,xk)∈QG1 ×···×QGk

µG(x1, . . . , xk)
∑

(a1,...,ak)∈AG1 ×···AGk
V G(x1,...,xk,a1...,ak)=1

Sx1,...xk(a1, . . . , ak), (3.8)

or, equivalently,

val(S,G) = Pr
[
V G(X,A) = 1

]
, (3.9)

where X is sampled according to µG and then A is sampled according to SX .

Given some nonlocal game G, we are interested in the maximum probability it can
be won, called the “value” of G. When we maximize over classical strategies, we call the
maximum probability of success the “classical value” and when we maximize over quantum
strategies we call the maximum probability of success the “quantum value.”

Definition 3.2.6 (The Classical Value of a k-Player Nonlocal Game). The classical value
valc(G) of G is,

valc(G) = max
S
{val(S,G)}, (3.10)

where the maximum is taken over all possible classical strategies S for G.

It is safe to take the maximum here, rather than the supremum, because it is known
that the optimum can always be achieved by a deterministic strategy, of which there are
finitely many.

Definition 3.2.7 (The Quantum Value of a k-Player Nonlocal Game). The quantum value
valq(G) of G is,

valq(G) = sup
S
{val(S,G)}, (3.11)

where the supremum is taken over all possible quantum strategies S for G.
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It is known that the supremum is necessary here [Slo17].

Given a nonlocal game G, we are interested in discussing games which are constructed
by repeating G in parallel. We start by defining what it means to play two games G1 and
G2 in parallel.

Definition 3.2.8 (Parallel Play). Given two k-player nonlocal games G1 and G2, a new
game G1 ⊗ G2 can be created by playing G1 and G2 in parallel. This game is defined by,
for all 1 ≤ i ≤ k,

QG1⊗G2
i = QG1

i ×Q
G2
i (3.12)

AG1⊗G2
i = AG1

i × A
G2
i , (3.13)

and for all ((x1, y1), . . . , (xk, yk)) ∈ QG1⊗G2
i and all ((a1, b1), . . . , (ak, bk)) ∈ AG1⊗G2

i ,

µG1⊗G2((x1, y1), . . . , (xk, yk)) = µG1(x1, . . . , xk)µ
G2(y1, . . . , yk), (3.14)

which says that the referee chooses questions for G1 and G2 independently and,

V G1⊗G2((x1, y1), . . . , (xk, yk), (a1, b1), . . . , (ak, bk))

= V G1(x1, . . . , xk, a1, . . . , ak) (3.15)

∧ V G2(y1, . . . , yk, b1, . . . , bk)

which says that the players win G1 ⊗G2 if and only if they win both G1 and G2.

In other words, each of the players get sent questions from G1 and G2, respond with
answers for G1 and G2, and they win if their answers satisfy both G1’s and G2’s verification
function.

Parallel repetition theorems upper-bound the probability of winning all of the parallel
repetitions of a game G. In other words, parallel repetition theorems upper-bound the
probability of winning the parallel repetition game based on G, which is defined as follows.

Definition 3.2.9 (Parallel Repetition Games). Given a k-player nonlocal game G we can
construct the parallel-repetition game G⊗n for some n ≥ 1 by repeating G in parallel n
times. This is defined by G⊗n = G⊗G⊗n−1 and G⊗1 = G.

We are interested in concentration bounds, which upper-bound the probability of win-
ning a certain fraction of the parallel repetitions of some game G. In other words, a
concentration bound upper-bounds the probability of winning the threshold game based
on G, which is defined as follows.
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Definition 3.2.10 (Threshold Games). Given a k-player nonlocal game G, we can con-
struct the threshold game T (G,α, n) for some n ≥ 1 and α ≥ 0 by repeating G in parallel
n times and requiring that at least αn of the repeated games be won. This is defined the
same as G⊗n, except with a different verification function,

V T (G,n,α)(x1, . . . , xk, a1, . . . , ak) =

{
1 if

∑n
j=1 V

G(x
(j)
1 , . . . , x

(j)
k , a

(j)
1 , . . . , a

(j)
k ) ≥ αn

0 otherwise,

(3.16)

where xi = (x
(1)
i , . . . , x

(n)
i ) and ai = (a

(1)
i , . . . , a

(n)
i ).

3.3 Deriving Concentration Bounds from Parallel Rep-

etition Theorems

In this section, we establish lemmas which will be useful for deriving concentration bounds
from parallel repetition theorems. The technique we use is based on a technique Jain
et al. have used to reduce the soundness error of a two-message quantum interactive
proof [JUW09].

Using Lemma 2.0.1 we can obtain the following result, which upper-bounds the value
of a threshold game based on a game G.

Lemma 3.3.1. Let G be any k-player game, and let m,n ∈ N, and ε > 0. Then,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ valq(C⊗n), (3.17)

where C = T (G, valq(G) + ε/2,m).

Proof. Let v = valq(G) and let S be any quantum strategy for B = T (G, v + ε,mn).
When the game B is played, the referee samples kmn questions according to µB. For all
integers 1 ≤ i ≤ k and 1 ≤ j ≤ mn, let q

(i)
j be a random variable taking on the value of

the question sent to player i for the j-th parallel repetition of G. After the questions are
sampled according to µB, the players’ answers are sampled according to SQ where Q are

the questions that were sampled. For all integers 1 ≤ i ≤ k and 1 ≤ j ≤ mn, let a
(i)
j be

a random variable taking on the value of the answer player j chooses for the i-th parallel
repetition of G. Now, for all integers 1 ≤ j ≤ mn, define

Xj = V G(q
(1)
j , . . . , q

(k)
j , a

(1)
j , . . . , a

(k)
j ). (3.18)
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The probability that S wins B is equal to,

Pr

 1

mn

∑
j∈[mn]

Xj ≥ v + ε

. (3.19)

Now consider the game C⊗n. By the definition of C⊗n, this game’s questions are
sampled identically to B’s, except that they are organized into n groups of m. For any
bijection σ : [m]× [n]→ [mn], let Sσ be the strategy where the players follow strategy S,
treating the question that comes in on index (j, `) for 1 ≤ j ≤ m and 1 ≤ ` ≤ n as if it
came in on index σ(j, `) while playing B. The players win the (j, `)-th parallel repetition
of G if and only if strategy S wins the σ(j, `)-th parallel repetition. So, the probability
that Sσ wins C⊗n is,

Pr

 1

m

∑
j∈[m]

Xσ(j,`) ≥ v +
ε

2
for all l ∈ [n]

. (3.20)

Let SR be the strategy where the players agree upon a bijection σ : [m] × [n] → [mn]
chosen uniformly at random from the set of all such bijections and then follow strategy Sσ.
SR is still a quantum strategy, since all of the Sσ strategies are quantum and the players
can use entanglement to agree upon a random σ. The probability that SR wins C⊗n is the
same expression,

Pr

 1

m

∑
j∈[m]

Xσ(i,`) ≥ v +
ε

2
for all l ∈ [n]

, (3.21)

except now σ is random. By replacing ε with ε/2 in the statement of Lemma 2.0.1 and
choosing α = v + ε/2, we obtain,

(1− ne−2ε2m/4) Pr
[ 1

mn

∑
j∈[mn]

Xj ≥ v +
ε

2
+
ε

2

]
(3.22)

≤ Pr
[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ v +
ε

2
for all ` ∈ [n]

]
The second factor on the left-hand side is the probability that S wins the game B, and

the right-hand side is the probability that SR wins C⊗n. So, since S was arbitrary, and
the probability that SR wins C⊗n is at most valq(C⊗n),

(1− ne−2ε2m/4) valq(B) ≤ valq(C⊗n), (3.23)

which completes the proof.
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The only place we use entanglement in the proof is for sampling the random bijection
σ. Obviously classical players can sample σ using shared randomness, so the lemma holds
true when the quantum value is replaced with the classical value.

Lemma 3.3.2. Let G be any k-player game, m,n ∈ N, and ε > 0. Then,

(1− ne−2ε2m/4) valc(T (G, valc(G) + ε,mn)) ≤ valc(C
⊗n), (3.24)

where C = T (G, valc(G) + ε/2,m).

An additional lemma will be helpful when applying Lemma 3.3.1.

Lemma 3.3.3. Let G be any k-player game, n ∈ N, and ε > 0, and val ∈ {valc, valq}.
Then,

val(T (G, val(G) + ε, n)) ≤ val(G)

val(G) + ε
. (3.25)

Proof. When val(G) + ε > 1, the left-hand side is zero and the inequality is trivially
true, so we can assume val(G) + ε ≤ 1. Let S be any strategy (classical if val = valc or
quantum if val = valq) for T (G, val(G) + ε, n), and let X1, . . . , Xn be random variables
such that Xj takes on the value 1 if S wins the game in index j and 0 otherwise. For all j,
E[Xj] = Pr[Xj = 1] ≤ val(G) since if this was false for some index j, then G could be won
with probability higher than val(G) by providing the questions to the strategy S in index
j and using shared randomness to sample questions for all of the other indices according
to µG. So, using Markov’s inequality,

val(T (G, val(G) + ε, n)) = Pr
[ 1

n

n∑
j=1

Xj ≥ val(G) + ε
]

(3.26)

≤
E[ 1

n

∑n
j=1 Xj]

val(G) + ε
(3.27)

=
1
n

∑n
j=1 E[Xj]

val(G) + ε
(3.28)

≤
n
n

val(G)

val(G) + ε
, (3.29)

which completes the proof.

In the next section, we use these lemmas to prove concentration bounds for certain
classes of nonlocal games that have known parallel repetition theorems.
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3.4 Special Cases of Nonlocal Games

3.4.1 Games on the Uniform Distribution and Games with Com-
plete Support

Chailloux and Scarpa have proven a parallel repetition theorem for two-player games on
the uniform distribution [CS14].

Definition 3.4.1 (Games on the Uniform Distribution). A two-player game G is on the
uniform distribution if µG(x, y) = 1

|QG1 ||QG2 |
for all x ∈ QG

1 and y ∈ QG
2 .

Their parallel repetition theorem is:

Theorem 3.4.1 (Chailloux and Scarpa [CS14]). For any game G on the uniform distri-
bution such that valq(G) ≤ 1− ε for ε > 0 and QG

1 = QG
2 = I and AG1 = AG2 = O, we have

that

valq(G⊗n) ≤ (1− ε2)Ω( n
log(|I||O|)−| log(ε)|). (3.30)

Given this parallel repetition theorem, we can derive the following concentration bound.

Theorem 3.4.2. Let G be any game on the uniform distribution with, QG
1 = QG

2 , AG1 = AG2
and valq(G) < 1. Then for any m,n ∈ N and ε > 0,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ (1− δ2)
Ω
(

n

m log(|QG1 ||AG1 |)
−| log(δ)|

)
, (3.31)

where δ = 1− valq(G)

valq(G)+ε/2
.

Proof. Let G be any game on the uniform distribution with QG
1 = QG

2 and AG1 = AG2 and
valq(G) < 1. Let ε > 0, m,n ∈ N and consider the game C = T (G, valq(G) + ε/2,m). By
Lemma 3.3.3,

valq(C) ≤ valq(G)

valq(G) + ε/2
(3.32)

= 1−
(
1− valq(G)

valq(G) + ε/2

)
(3.33)

= 1− δ. (3.34)

18



By the definition of T , the game C is also a game on the uniform distribution, with
QC

1 = QC
2 , AC1 = AC2 , and δ > 0 since ε > 0, so by Theorem 3.4.1,

valq(C⊗n) ≤ (1− δ2)Ω
(

n
log(|I||O|)−|log(δ)|

)
, (3.35)

where |I| = |QC
1 | = |QG

1 |m, |O| = |AC1 | = |AG1 |m.

Finally, by Lemma 3.3.1,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ valq(T (G, valq(G) + ε/2,m)⊗n) (3.36)

= valq(C⊗n) (3.37)

≤ (1− δ2)
Ω
(

n

log(|QG1 |m|AG1 |m)
−| log(δ)|

)
(3.38)

= (1− δ2)
Ω
(

n

m log(|QG1 ||AG1 |)
−| log(δ)|

)
. (3.39)

For example, we can set n = m2 to get an exponentially-decreasing concentration bound
for games on the uniform distribution.

Corollary 3.4.3. Let G be any game on the uniform distribution with, QG
1 = QG

2 , AG1 = AG2
and valq(G) < 1. Then for any m ∈ N and ε > 0,

(1−m2e−2ε2m/4) valq(T (G, valq(G) + ε,m3)) ≤ (1− δ2)
Ω
(

m

log(|QG1 ||AG1 |)
−| log(δ)|

)
, (3.40)

where δ = 1− valq(G)

valq(G)+ε/2
.

We can further simplify the bound by noting that limm→+∞(1 −m2e−2ε2m/4) = 0 and

19



so for large enough m, (1−m2e−2ε2m/4) ≥ 1
2
. Also, if ε ≤ 1 then,

δ = 1− valq(G)

valq(G) + ε/2
(3.41)

=
valq(G) + ε/2

valq(G) + ε/2
− valq(G)

valq(G) + ε/2
(3.42)

=
valq(G) + ε/2− valq(G)

valq(G) + ε/2
(3.43)

=
ε/2

valq(G) + ε/2
(3.44)

=
ε

2 valq(G) + ε
(3.45)

≥ ε

3
, (3.46)

and so the following simplified corollary is true.

Corollary 3.4.4. Let G be any game on the uniform distribution with, QG
1 = QG

2 , AG1 = AG2
and valq(G) < 1. Then for large enough m ∈ N and any 0 < ε ≤ 1,

valq(T (G, valq(G) + ε,m3)) ≤ 2(1− (ε/3)2)
Ω
(

m

log(|QG1 ||AG1 |)
−| log(ε/3)|

)
. (3.47)

The same simplifications can be made to all corollaries in this chapter, so we will make
them implicitly from now on.

Chailloux and Scarpa have also proven parallel repetition theorems for games that have
complete support [CS14].

Definition 3.4.2 (Games with Complete Support). A two-player game G has complete
support if µG(x, y) > 0 for all x ∈ QG

1 and y ∈ QG
2 .

Their parallel repetition theorem is as follows.

Theorem 3.4.5 (Chailloux and Scarpa [CS14]). For any game G with complete support
such that valq(G) ≤ 1− ε for ε > 0 and QG

1 = QG
2 = I and AG1 = AG2 = O, we have that

valq(G⊗n) ≤ (1− ε2)Ω( n
Q log(|I||O|)−

| log(ε)|
Q

), (3.48)

where Q = |I|2 maxx,y(µG(x,y))2

minx,y µG(x,y)
.
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Unfortunately, applying the same technique using Theorem 3.4.5 does not seem to
provide a useful concentration bound. We include the following proof as an example of our
technique not working.

Theorem 3.4.6. Let G be any game with complete support, QG
1 = QG

2 , AG1 = AG2 and
valq(G) < 1. Then for any m,n ∈ N and ε > 0,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ (1− δ2)
Ω
(

n

Rm log(|QG1 ||AG1 |)
− | log(δ)|

R

)
, (3.49)

where δ = 1− valq(G)

valq(G)+ε/2
and,

R =
|QG

1 |2m(maxx,y(µ
G(x, y))2)m

(minx,y µC(x, y))m
. (3.50)

(3.51)

Proof. Let G be any game with complete support with QG
1 = QG

2 and AG1 = AG2 and
valq(G) < 1. Let ε > 0, m,n ∈ N and consider the game C = T (G, valq(G) + ε/2,m). By
Lemma 3.3.3,

valq(C) ≤ valq(G)

valq(G) + ε/2
(3.52)

= 1− (1− valq(G)

valq(G) + ε/2
) (3.53)

= 1− δ. (3.54)

By the definition of T , the game C is also a game with complete support, QC
1 = QC

2 ,
AC1 = AC2 , and δ > 0, so by Theorem 3.4.5,

valq(C⊗n) ≤ (1− δ2)Ω
(

n
R log(|I||O|)−

|log(δ)|
R

)
, (3.55)

where |I| = |QC
1 | = |QG

1 |m, |O| = |AC1 | = |AG1 |m, and,

R =
|I|2 maxx,y(µ

C(x, y))2

minx,y µC(x, y)
(3.56)

=
|I|2(maxx,y(µ

G(x, y))2)m

(minx,y µG(x, y))m
(3.57)

=
|QG

1 |2m(maxx,y(µ
G(x, y))2)m

(minx,y µG(x, y))m
. (3.58)
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Finally, by Lemma 3.3.1,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn))

≤ valq(T (G, valq(G) + ε/2,m)⊗n) (3.59)

= valq(C⊗n) (3.60)

≤ (1− δ2)
Ω
(

n

R log(|QG1 |m|AG1 |m)
− | log(δ)|

R

)
(3.61)

= (1− δ2)
Ω
(

n

Rm log(|QG1 ||AG1 |)
− | log(δ)|

R

)
. (3.62)

We won’t bother giving a simplified corollary since this bound is of little use. The
problem is that the size of the question set of the game C⊗m grows exponentially in m.
Because Q in Theorem 3.4.5 includes a factor of the question set size |I|, m needs to be
logarithmic in n for the exponent to stay positive. When m is logarithmic in n, the factor
(1− ne2ε2m/4) does not exponentially approach 1.

3.4.2 k-Player Free Games

A free game is one where the questions sent to each player are chosen independently. Any
free game can be converted into an equivalent game with complete support without loss
of generality by removing the questions that are asked with probability 0, so they can be
seen as a subset of the games with complete support.

Definition 3.4.3 (k-player Free Game). A k-player nonlocal game G is a free game if for
all x1 ∈ QG

1 , . . . , xk ∈ QG
k ,

µG(x1, . . . , xk) = µG1 (x1) · · ·µGk (xk), (3.63)

where for each j, µGj is the distribution on player j’s questions induced by µG.

Chung et al. have proven parallel repetition theorems for k-player free games in both
the quantum and classical settings. We begin with the classical setting.

Theorem 3.4.7 (Chung et al. [CWY15]). Let G be a k-player free game with classical
value valc(G) ≤ 1− ε for ε ≥ 0. Then,

valc(G
⊗n) ≤ (1− ε2)Ω

(
n
sk

)
, (3.64)

where s = max1≤j≤k log2(|AGj |).
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From this parallel repetition theorem we obtain the following concentration bound.

Theorem 3.4.8. Let G be any k-player free game with valc(G) < 1. Then for any m,n ∈ N
and ε > 0,

(1− ne−2ε2m/4) valc(T (G, valc(G) + ε,mn)) ≤ (1− δ2)Ω
(

n
msk

)
, (3.65)

where s = max1≤j≤k log2(|AGj |) and δ = 1− valc(G)
valc(G)+ε/2

.

Proof. Let ε > 0, m,n ∈ N and consider the game C = T (G, valc(G) + ε/2,m). By
Lemma 3.3.3,

valq(C) ≤ valc(G)

valc(G) + ε/2
(3.66)

= 1− (1− valc(G)

valc(G) + ε/2
) (3.67)

= 1− δ. (3.68)

By the definition of T , the game C is also a free game, and δ > 0 since ε > 0, so by
Theorem 3.4.7,

valc(C
⊗n) ≤ (1− δ2)Ω

(
n
tk

)
, (3.69)

where t = max1≤j≤k log2(|ACj |) = mmax1≤j≤k log2(|AGj |) by definition of T .

Finally, by Lemma 3.3.2,

(1− ne−2ε2m/4) valc(T (G, valc(G) + ε,mn)) (3.70)

≤ valc(T (G, valc(G) + ε/2,m)⊗n)

= valc(C
⊗n) (3.71)

≤ (1− δ2)Ω
(
n
tk

)
(3.72)

= (1− δ2)Ω
(

n
msk

)
. (3.73)

By setting n = m2 and applying the same simplifications we discussed in the previous
section, we get an exponentially-decaying concentration bound for k-player free games.
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Corollary 3.4.9. Let G be any k-player free game with valc(G) < 1. Then for large enough
m ∈ N and any 0 < ε ≤ 1,

valc(T (G, valc(G) + ε,m3)) ≤ 2(1− (ε/3)2)Ω
(
m
sk

)
, (3.74)

where s = max1≤j≤k log2(|AGj |).

Chung et al.’s parallel repetition theorem in the quantum setting is as follows.

Theorem 3.4.10 (Chung et al. [CWY15]). Let G be a k-player free game with valq(G) ≤
1− ε for ε ≥ 0. Then, for n > sk4 log(k/ε)/ε3/2),

valq(G⊗n) ≤ (1− ε3/2)Ω(n/k4s) (3.75)

where s = max1≤j≤k log2(|AGj |).

From this we derive the following concentration bound for the quantum setting.

Theorem 3.4.11. Let G be any k-player free game with valq(G) < 1. Then for any
m,n ∈ N and ε > 0 where n > msk4 log(k/δ)/δ3/2,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ (1− δ3/2)Ω
(

n
k4ms

)
, (3.76)

where s = max1≤j≤k log2(|AGj |) and δ = 1− valq(G)

valq(G)+ε/2
.

Proof. Let G be any k-player free game with valq(G) < 1. Let ε > 0, m,n ∈ N and consider
the game C = T (G, valq(G) + ε/2,m). By Lemma 3.3.3,

valq(C) ≤ valq(G)

valq(G) + ε/2
(3.77)

= 1− (1− valq(G)

valq(G) + ε/2
) (3.78)

= 1− δ. (3.79)

By the definition of T , the game C is also a free game, and δ > 0 since ε > 0, so by
Theorem 3.4.7, as long as n > sk4 log(k/δ)/δ3/2,

valq(C⊗n) ≤ (1− δ3/2)Ω
(

n
k4s

)
, (3.80)
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where t = max1≤j≤k log2(|ACj |) = mmax1≤j≤k log2(|AGj |) by definition of T .

Finally, by Lemma 3.3.2,

(1− ne−2ε2m/4) valq(T (G, valq(G) + ε,mn)) ≤ valq(T (G, valq(G) + ε/2,m)⊗n) (3.81)

= valq(C⊗n) (3.82)

≤ (1− δ3/2)Ω
(

n
k4t

)
(3.83)

= (1− δ3/2)Ω
(

n
k4ms

)
. (3.84)

We can simplify by setting n = m2, applying the same simplifications as before and
noting that with k and ε constant, m2 > msk4(log(k/δ)/δ3/2 is true for large enough m.

Corollary 3.4.12. Let G be any k-player free game with valq(G) < 1. Then for any
0 < ε ≤ 1 and large enough m ∈ N,

valq(T (G, valq(G) + ε,mn)) ≤ 2(1− (ε/3)3/2)Ω
(
m
k4s

)
, (3.85)

where s = max1≤j≤k log2(|AGj |).

In the same article, Chung et al. also study k-player games where the players are
allowed to output quantum states, called classical-quantum (CQ) games. They prove a
parallel repetition theorem for CQ games. We expect that a variant of the technique we
are using here, based on Lemma 2.0.1, would provide concentration bounds for CQ games.

3.5 Future Work

There are several other types of games which have known parallel repetition theorems
against quantum players, but we cannot derive concentration bounds for them using
Lemma 3.3.1. A goal we leave for future work is to prove concentration bounds for these
kinds of games, either by inventing a technique that is more generally applicable than
Lemma 3.3.1, or by taking ad-hoc approach for each type of game. These game types are:

• Projection Games and Unique Games. A projection game is a two-player game where
for every pair of questions and every answer from the first player, there is at most one
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possible answer from the second player that would win the game. Unique games are
projection games where there is always exactly one winning answer from the second
player. Lemma 3.3.1 does not work for projection games or unique games, since the
game C in the statement of the lemma is not any kind of game for which a parallel
repetition theorem is known.

• Anchored Games. A two-player single-round game is said to be α-anchored if there
is some subset X⊥ of Alice’s questions and some subset Y⊥ of Bob’s questions, such
that both subsets have probability at least α, and conditioned on the questions
coming from those sets, it looks like the referee is choosing the questions indepen-
dently [BVY15]. Lemma 3.3.1 does not work for these games since although the game
C will be anchored, if the original game is α-anchored, we can’t assume that the C
game will be more than α2m-anchored. Since the C game’s anchoring value is ex-
ponentially smaller, the bound provided by parallel repetition theorem for anchored
games won’t be strong enough for Lemma 3.3.1 to give a useful bound.

• Other Types of Games. We have not tried to apply Lemma 3.3.1 to all known parallel
repetition theorems, for example the free games studied by Chung et al. where the
players are allowed to output quantum states instead of classical messages [CWY15],
or fortified games [Mos14]. Proving concentration bounds for game types not men-
tioned in this paper is left as future work.

3.6 Conclusion

The contributions of this chapter are:

• Lemma 3.3.1. If one is given a game G and knows a parallel repetition theorem that
applies to threshold games constructed from G, then through Lemma 3.3.1 one can
obtain a concentration bound for parallel repetitions of G.

• Concentration bounds for two-player games on the uniform distribution and k-player
free games (against entangled players), obtained by combining known parallel repe-
tition theorems with Lemma 3.3.1.
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Chapter 4

Simple Parallel Repetition Reduces
Error For Quantum Interactive
Proofs

4.1 Introduction

In this chapter we develop a concentration bound for quantum interactive proofs and show
that an interactive proof protocol’s error rate can be reduced through parallel repetition,
using techniques similar to the ones we used in the last chapter for nonlocal games.

In complexity theory, an interactive proof is a protocol between two parties: a verifier
and a prover. Typically, there is some string x known to both parties, and the goal of
the protocol is to convince the verifier that x ∈ L where L ⊆ {0, 1}∗ is a language. The
verifier is computationally bounded, say to polynomial time in the size of x. The prover
is unbounded, and thus, by answering the verifier’s questions, the prover may be able to
convince the verifier that x ∈ L when the verifier cannot discover that fact on their own.
During an execution of an interactive proof protocol,

1. The verifier sends a polynomial-in-|x|-sized message to the prover.

2. The prover sends a polynomial-in-|x|-sized response back to the verifier.

3. Steps (1) and (2) repeat some polynomial-in-|x| number of times until finally the
verifier outputs an “accept” or “reject” answer.
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In order for the protocol to be useful for deciding a language L, it must satisfy two
properties:

1. Completeness. There is an α > 0 such that if x ∈ L, then there is at least one
prover that can cause the verifier to accept with probability at least α.

2. Soundness. If x /∈ L, then no unbounded prover can cause the verifier to output
“yes” with probability greater than β, where β < α.

The probability β that the verifier is fooled when x /∈ L is called the “soundness error”
and the probability 1 − α that the verifier is not convinced when x ∈ L is called the
“completeness error.”

We say that there is an interactive proof system for a language L if there is a verifier for
which the above properties hold. If we add the additional constraint that α ≥ 2/3 and β ≤
1/3, then in the case where the verifier is classical (i.e. is described by a classical algorithm
with access to random bits) and runs in polynomial time, this defines the complexity class
IP. When the messages are quantum states and the verifier is a polynomial-time quantum
algorithm, it defines the complexity class QIP.

Interactive proof systems are powerful for expressing languages. For example, the class
IP of languages with classical interactive proof systems is the same as the class PSPACE of
languages where membership can be decided by polynomial-space algorithms [Sha92]. It
is also true that QIP = PSPACE, but unlike in the classical case, we know that QIP[3] =
QIP = PSPACE, where QIP[3] is like QIP but restricted to interactive proof protocols of
only 3 messages (beginning with a message from the prover) [JJUW10]. This motivates
the study of classes like QIP[2] (quantum interactive proofs restricted to one message from
the verifier and one response from the prover). When studying constant-round classes like
QIP[2], it is useful to be able to reduce the soundness and completeness error without
increasing the number of rounds.

One way to reduce the soundness and completness error of a quantum interactive proof
system, which does increase the number of messages, is to repeat the protocol n times
sequentially and accept if and only if that at least bn(α+β)/2c of the repetitions accept. If
the original protocol uses k messages, then the error-reduced protocol will use nk messages.
Since the repetitions of the protocol come after each other, the verifier can be sure that
the prover is playing each repetition independently, and so if the original protocol has
soundness error at most β, then the probability the prover can win m of the n repetitions
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is at most,

n∑
j=m

(
n

j

)
βj(1− β)n−j, (4.1)

which decreases exponentially in n when bm = n(α + β)/2c.
Repeating the protocol in sequence n times like this has the disadvantage that the

error-reduced protocol requires a factor of n more rounds than the original protocol. We
would like to be able to decrease the soundness and completeness error of an interactive
proof system by repeating it in parallel, rather than sequentially.

For classical interactive proofs, it is known that the error reduction from repeating an
interactive proof protocol in parallel is the same as the error reduction from repeating it in
sequence. However, the situation is different for quantum interactive proofs. For example,
Molina found protocols for which provers can win some k out of n parallel repetitions with
a higher likelihood than they could win k out of n sequential repetitions (for some values
of k and n) [MP12]. From the same work of Molina’s, we know that if the maximum
probability that any prover can win a single instance of an interactive proof protocol is
p, then the probability any prover can win at least k out of n parallel repetitions of the
protocol is at most,

pk
(
n

k

)
. (4.2)

Using this upper bound, Molina shows that completeness and soundness error can be
exponentially reduced by repeating the protocol in parallel, as long as α and β are separated
by a certain function:

Theorem 4.1.1 (Molina [MP12]). Let the parameters α and β for a quantum interactive
proof system be constant real numbers, with 0 ≤ β < 2−H(α) < α ≤ 1, where H(α) =
−α log2(α)− (1−α) log2(1−α). Then, a strategy based on parallel repetition followed by a
threshold value computation will bring the soundness and completeness errors below ε > 0
in O(log

(
1
ε

)
) repetitions.

For valid values of α and β, Theorem 4.1.1 removes the need to use error-reduction
techniques that are more complicated than simple parallel repetition, e.g. as are used
in [JUW09] and [KW00].

In this chapter, we will remove the constraint that α and β have to be separated by
2−H(α), although we will require a log-factor more parallel repetitions to achieve the same
reduction in error. This chapter’s main theorem is:
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Theorem 4.4.1. Let 0 ≤ 1 − α < 1 be the completeness error of a quantum interactive
proof verifier, and let 0 ≤ β < α be the soundness error. Write α = β+ ε for ε > 0. Then,
by repeating the interactive proof system in parallel and checking for a threshold of at least
β + ε/2, both the completeness and soundness error can be reduced to at most δ > 0 in
O(log(1/δ) log(log(1/δ))) parallel repetitions.

We will begin in the next section with formal definitions for interactive proof systems.

4.2 Definitions

We begin with the definition of a k-round interactive proof verifier. For all of the following
definitions, let Q = C2 be the state space of a single-qubit register. For any complex
euclidean space X , D(X ) is the set of density operators on X .

Definition 4.2.1. A k-round interactive proof verifier is a pair (V, p), where p is some
positive integer-valued function and V is a function which on input x ∈ {0, 1}∗ outputs
k+ 1 quantum channels V x

1 , . . . , V
x
k+1, where for all x ∈ {0, 1}∗ and integers 1 ≤ j ≤ k+ 1,

V x
j : D(Q⊗p(|x|) ⊗Q⊗p(|x|))→ D(Q⊗p(|x|) ⊗Q⊗p(|x|)). (4.3)

In this definition, V is a function representing the actions of a verifier during an exe-
cution of the protocol. The channel V x

1 is used to prepare the verifier’s initial state and
the first message to the prover. The channels V x

2 , . . . , V
x
k are used to process the prover’s

response and prepare the next message to the prover, and the channel V x
k+1 is used to

process the prover’s last message and decide whether to accept or reject. The verifier’s
memory is of size p(|x|), and the messages sent between the verifier and prover will all
be of size p(|x|). A more general definition would allow the size of the messages and the
verifier’s memory to all be different, but in terms of defining complexity classes like QIP,
where we require p to be bounded by a polynomial, we haven’t lost any generality.

Next, we define a prover who can interact with the verifier.

Definition 4.2.2. A prover compatible with a k-round interactive proof verifier (V, p) is
a pair (P, f) where f is some positive integer-valued function and P is a function which
on input x ∈ {0, 1} outputs k quantum channels P x

1 , . . . P
x
k . For all integers 1 ≤ j ≤ k and

x ∈ {0, 1}∗,

P x
j : D(Q⊗p(|x|) ⊗Q⊗f(|x|))→ D(Q⊗p(|x|) ⊗Q⊗f(|x|)). (4.4)
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Given some verifier V , prover P , and string x, the interaction between V and P on x
is a probabilistic process which results in either acceptance or rejection, according to the
following definition.

Definition 4.2.3. Let P = (P, f) be a prover compatible with a k-round interactive proof
verifier V = (V, p), and let x ∈ {0, 1}∗. The result of V interacting with P on x is the
result of the following process.

1. Prepare two registers X and Y of p(|x|) qubits each in the state |0〉⊗p(|x|), and apply
V 1
x to the register (X, Y ).

2. Initialize an f(|x|)-qubit register Z to the state |0〉⊗f(|x|).

3. For j ∈ {1, . . . , k} in sequence, apply P x
j to the register (Y, Z), and then apply V x

j+1

to the register (X, Y ).

4. Measure the first qubit of register X. If the outcome is 1 we say that the verifier
accepts, otherwise we say that the verifier rejects.

In this definition, the register X holds the verifier’s memory and Z holds the prover’s
memory. The register Y is sent back and forth between the verifier and the prover, con-
taining either the message from the verifier to the prover or vice-versa.

Now, we can use this definition of an interaction between a verifier and a prover to say
how good the verifier is at recognizing a language L in terms of completeness error and
soundness error.

Definition 4.2.4. Let V be a verifier and let L be a language. We say that V has soundness
error at most β for L if for all x /∈ L and all compatible provers P , the probability that
V accepts after an interaction with P on the string x is at most β. We say that V has
completeness error at most 1− α for L if there exists a compatible prover P such that for
all x ∈ L, the probability that V accepts after an interaction with P on the string x is at
least α.

With the aim of reducing the completeness and soundness error, given a verifier V , we
can construct a new verifier which runs multiple instances of V in parallel and checks that
the number of acceptances reaches a certain threshold.
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Definition 4.2.5. Let V = (V, p) be a k-round verifier. Then for n ∈ N and γ ≥ 0,
V⊗nγ = (C, f) is a verifier where f(x) = 2np(x) + 1, and C is a function based on V which,
on input x ∈ {0, 1}∗, outputs the channels Cx

1 , . . . , C
x
k+1, where for all 1 ≤ j ≤ k,

Cx
j = 1⊗ (V x

j )⊗n, (4.5)

and,

Cx
k+1 = T (1⊗ (V x

k+1)⊗n), (4.6)

where the action of the channel T is as follows. Index the qubits of a 2np(|x|) + 1 qubit
register from from 0 up to 2np(x). Then T is the channel that measures the qubits in
indices {2jp(|x|) + 1 | j ∈ {0, . . . n− 1}} and sets the state of the first qubit to 1 if at least
γn of the measurement results are 1, and to 0 if not.

In other words, the verifier V⊗nγ runs V in parallel n times and will accept if and only
if at least γn of the V ’s accept.

Molina’s upper bound on the probability of winning k out of n parallel repetitions that
we mentioned in the introduction can be restated in the language of our definitions by
taking k = dγne.

Corollary 4.2.1 (of a result due to Molina [MP12]). Let V be a verifier with soundness
error at most β for L. Then Vnγ has soundness error at most,(

n

dγne

)
βdγne, (4.7)

for L.

In the next section, we prove a different upper bound, which we will use in the proof
of our main theorem.

4.3 Bounding Soundness Error

The technique we will use to upper-bound the soundness error is very similar to the one we
used to derive concentration bounds for two-player games in the last chapter. It is based on
the technique for reducing error in two-message quantum interactive proofs [JUW09]. The
following lemma can be seen as the quantum interactive proof analogue of Lemma 3.3.3.

32



Lemma 4.3.1. Let V = (V, p) be a verifier with soundness error at most β for a language
L. Let n ∈ N and ε > 0. Then V⊗nβ+ε has soundness error at most

β

β + ε
(4.8)

for L.

Proof. Let P = (P, f) be any prover compatible with V⊗nβ+ε = (C, p) and let x /∈ L. Let X,
Y , and Z be quantum registers as defined in Definition 4.2.5 for an interaction between P
and V⊗nβ+ε. Let X1, . . . , Xn be random variables over {0, 1} whose outcomes are defined as
follows. Carry out the interaction between P and V on x as defined in Definition 4.2.5,
and now index the qubits of register X from 0 up to 2p(|x|). For all integers 1 ≤ j ≤ n,
the random variable Xj takes on the value of the qubit in index 2jp(|x|) + 1, which we
know will be in a classical state from measurements in the definition of V⊗nβ+ε.

For all 1 ≤ j ≤ n, E[Xj] = Pr[Xj = 1] ≤ β, since if this was false then let j be an
index for which it is false. We will show a contradiction. Let Q = (Q, g) be a prover
compatible with V that works as follows on a string x. The prover’s memory is of size
f(|x|) = f(|x|) + 2(n − 1)p(|x|). The first f(|x|) qubits are used to store the memory for
a simulation of P , and the remaining memory is divided into (n − 1) sections of 2p(|x|)
qubits, which are used to store the memory of (n − 1) simulations of V and their output
messages. In round i of the protocol, Q applies V x

i to the sections of memory for each of
the simulations of V , and then applies P x

i to (1) the memory set aside for the simulation of
P , (2) the message from the real V , and (3) the output messages of the (n−1) simulations
of V . The message from the real V is provided to the jth input index of P x

i , and the
messages from the (n−1) simulations of V are provided to the other input indices by some
arbitrary but fixed way. The jth index of the output of P x

i is sent back to the real V ,
and the other indexes of the output are sent back to their corresponding simulated V ’s. If
Pr[Xj = 1] ≤ β is false, then Q causes V to accept with probability greater than β on an
input x /∈ L, contradicting the fact that V has soundness error at most β for L.

So, using Markov’s inequality, the probability that V⊗nβ+ε accepts on input x /∈ L when
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interacting with P is,

Pr

[
1

n

n∑
j=1

Xj ≥ β + ε

]
≤

E[ 1
n

∑n
j=1Xj]

β + ε
(4.9)

=
1
n

∑n
j=1 E[Xj]

β + ε
(4.10)

≤
n
n
β

β + ε
. (4.11)

Since P and x /∈ L were arbitrary, V ⊗nβ+ε has soundness error at most β
β+ε

for L.

The next theorem can be seen as the analogue of Lemma 3.3.1 for quantum interactive
proofs. It establishes that repeating a verifier V in parallel and then checking for a threshold
slightly greater than V ’s soundness error always reduces the soundness error exponentially
in the number of repetitions.

Theorem 4.3.2. Let V be a verifier with soundness error at most β for a language L. Let
m,n ∈ N and ε > 0. Then V ⊗mnβ+ε has soundness error at most(

β
β+ε/2

)n
1− ne−2ε2m/4

(4.12)

for L, as long as the denominator is positive.

Proof. Let P be any prover compatible with V⊗mnβ+ε , and let x /∈ L. Define the binary-

random variables X1, . . . , Xmn as follows. Carry out the interaction between P and V⊗mnβ+ε

on x, and then for all integers 1 ≤ j ≤ n, the random variable Xj takes on the value 1 if the
jth parallel repetition of V accepts, and takes on the value 0 otherwise. The probability
that V⊗mnβ+ε accepts is,

Pr

[
1

n

n∑
j=1

Xj ≥ β + ε

]
. (4.13)

Now consider the verifiers C = Vmβ+ε/2 and E = Cn
1 . By Lemma 4.3.1, C has soundness

error at most β
β+ε/2

for L. By Corollary 4.2.1 (setting γ = 1), E has soundness error at

most
(

β
β+ε/2

)n
for L. Let Q be the prover compatible with E defined as follows. At the
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start of the interaction with E , Q samples a bijection σ : [m] × [n] → [mn] uniformly at
random from the set of all such bijections. Q saves σ to its memory and also initializes
memory for a simulated instance of P in its memory. Upon receipt of a message from E ,
it treats it as mn registers indexed by pairs (i, j) for integers 1 ≤ i ≤ m and 1 ≤ j ≤ n,
where register (i, j) contains the message from the ith parallel repetition of V within the
jth parallel repetition of C. We can think of P as accepting mn messages from mn parallel
repetitions of V indexed from 1 up to mn. Q provides its input messages to P , so that the
(i, j)th register of Q’s input is given to P in index σ(i, j). By the definition of E and the
way we have constructed Q, we can write the probability that Q accepts as,

Pr
[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ β +
ε

2
for all ` ∈ [n]

]
. (4.14)

By replacing ε with ε/2 in Lemma 2.0.1, and choosing α = β + ε/2, we obtain,

(1− ne−2ε2m/4) Pr
[ 1

mn

∑
j∈[mn]

Xj ≥ β +
ε

2
+
ε

2

]
≤ Pr

[ 1

m

∑
j∈[m]

Xσ(j,`) ≥ β +
ε

2
for all ` ∈ [n]

]
(4.15)

The second factor in the left-hand side is the probability Vmnβ+ε accepts after interacting
with P on x. The right-hand side is the probability that E accepts when interacting with Q
on x. And so, using the fact that x /∈ L and that E has soundness error at most

(
β

β+ε/2

)n
,

the probability that Vmnβ+ε accepts after interacting with P on x is at most(
β

β+ε/2

)n
1− ne−2ε2m/4

, (4.16)

as long as the denominator is positive. Since P and x /∈ L were arbitrary (and Q is
independent of x), Vmnβ+ε has soundness error at most(

β
β+ε/2

)n
1− ne−2ε2m/4

(4.17)

for L, as long as the denominator is positive.
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4.4 Parallel Repetition Can Always Reduce Error

We can now prove our main theorem.

Theorem 4.4.1. Let 0 ≤ 1 − α < 1 be the completeness error of a quantum interactive
proof verifier, and let 0 ≤ β < α be the soundness error. Write α = β+ ε for ε > 0. Then,
by repeating the interactive proof system in parallel and checking for a threshold of at least
β + ε/2, both the completeness and soundness error can be reduced to at most δ > 0 in
O(log(1/δ) log(log(1/δ))) parallel repetitions.

Proof. Let V be a verifier with completeness error at most 0 ≤ 1 − α < 1 and soundness
error at most 0 ≤ β < α for a language L. Write α = β + ε. Let n ∈ N where n ≥ 2 and
let m = 16 log(n)/ε2. We will consider the completeness error and soundness error for the
verifier V⊗mnβ+ε/2 separately, beginning with the soundness error.

By Theorem 4.3.2, the verifier V⊗mnβ+ε/2 has soundness error at most,(
β

β+ε/4

)n
1− ne−2ε2m/16

=

(
β

β+ε/4

)n
1− ne−2 log(n)

(4.18)

=

(
β

β+ε/4

)n
1− 1/n

(4.19)

≤ 2
( β

β + ε/4

)n
, (4.20)

since 1/n ≤ 0.5 for all n ≥ 2. We want,

2
( β

β + ε/4

)n ≤ δ, (4.21)

which is trivially true if β = 0. Otherwise, when β > 0, we can let b =
(

β
β+ε/4

)−1
and since

ε > 0 we know that b > 1, so we can take the log-base-b of both sides to get an equivalent
inequality,

−n+ logb(2) ≤ logb(δ), (4.22)

which is equivalent to,

n ≥ − logb(δ) + logb(2) = logb(1/δ) + logb(2). (4.23)
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So if we let n = dlogb(1/δ)+logb(2)e, then by repeating V in parallelmn = 16n log(n)/ε2 ∈
O(log(1/δ) log(log(1/δ))) times and checking for a threshold of β + ε/2, we have reduced
the soundness error to at most δ.

For the completeness error, let P be a prover compatible with V such that for all x ∈ L,
V accepts when interacting with P on x with probability at least α > 0. Consider the
prover Q compatible with V⊗mnβ+ε/2 which simulates mn independent copies of P . Then Q has
independent probability at least α of winning each parallel repetition of V when interacting
with V ⊗mnβ+ε/2 on an x ∈ L. Each parallel repetition can be thought of as an independent
experiment that yields success with probability p ≥ α, and so the number of successful
outcomes is described by the binomial distribution with N = mn experiments each with
independent probability of success p. The probability that fewer than k = (β+ε/2)N < pN
experiments yield success (in other words, the probability that P ′ fails to convince V mn

β+ε/2),
can be upper-bounded by the Chernoff bound we discussed in Chapter 2. Where X is the
number of successful outcomes,

Pr[X ≤ k] ≤ exp

(
− 1

2p

(Np− k)2

N

)
(4.24)

= exp

(
− 1

2p

(N(p− (β + ε/2)))2

N

)
(4.25)

= exp

(
− 1

2p
N(p− (β + ε/2))2

)
(4.26)

≤ exp

(
−1

2
N(p− (β + ε/2))2

)
(4.27)

≤ exp

(
−1

2
N(α− (β + ε/2))2

)
(4.28)

= exp

(
−1

2
N(ε/2)2

)
(4.29)

= exp

(
−1

2
mnε2/4

)
(4.30)

= exp

(
−1

2
16n log(n)/4

)
(4.31)

= exp(−2n log(n)). (4.32)

(4.33)

If we choose n ≥ log(1/δ) then by repeating V in parallel mn times, we have reduced
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the completeness error to at most

exp(−2 log(1/δ) log(log(1/δ))) ≤ exp(− log(1/δ)) = exp(log(δ)) = δ. (4.34)

Combining our analysis of the soundness error and completeness error, if we choose

n = 2 +

{
dlog(1/δ)e if β = 0

dlog(1/δ)e+ dlogb(1/δ) + logb(2)e otherwise,
(4.35)

then Vmnβ+ε/2 has completeness and soundness error at most δ. Furthermore, mn = 16n log(n)/ε2 ∈
O(log(1/δ) log(log(1/δ))).

(Note that the completeness error part of our proof is pretty much a copy of the
completeness error part of Molina’s proof of 4.1.1 with some extra detail added).

4.5 Conclusion

The contributions of this chapter are:

• A proof that soundness error can be reduced exponentially by repeating a quantum
interactive proof system in parallel and checking that the fraction of repetitions that
accept is slightly larger than the original proof system’s soundness error.

• A proof that given a quantum interactive proof system with parameters α (the prob-
ability with which the verifier can be convinced to accept when they should accept)
and β (the soundness error), as long as α > β, both the soundness error and com-
pleteness error can be reduced exponentially by repeating the protocol in parallel
and requiring an (α+ β)/2 fraction of the repetitions to be won. Our result requires
a log-factor more repetitions than are necessary in the classical case.
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Chapter 5

Conclusion

We began in Chapter 2 by introducing some facts from probability theory and then proved
Lemma 2.0.1, a fact about binary-valued random variables. We went on to use Lemma 2.0.1
in our study of parallel repetition and concentration bounds in Chapters 3 and 4.

In Chapter 3, we developed a technique for converting parallel repetition theorems into
concentration bounds for nonlocal games. We proved new concentration bounds for certain
kinds of games using the parallel repetition theorems that are currently available.

In Chapter 4, we proved that the soundness and completeness errors of a quantum
interactive proof system can be reduced through simple parallel repetition, eliminating the
need to rely on more complicated error-reduction strategies.

Chapters 3 and 4 are are examples of how Lemma 2.0.1 can be used to reduce the
problem of winning n threshold games repeated in parallel to the problem of winning one
threshold game (which has a slightly higher threshold). We expect this technique to be
applicable to other problems that we did not discuss, e.g. reducing the error in multi-prover
quantum interactive proof protocols.
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