
Instruction Set Filters and Other Exploit Defenses
Changing the architecture to make exploitation harder.

Taylor Hornby Michael Locasto

October 29, 2013

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
Exploit Defenses

All sufficiently complex software contains vulnerabilities.

We want to run vulnerable software and stay safe.

Defenses developed in response to specific attacks/techniques.

Attacks developed in response to defenses.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
The not-so-periodic table of attack and defense

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
A simpler defense categorization

Attacker has to express their malicious computation somehow.

Think of defenses as limiting the attacker’s ability to express
their malicious computation.

1 Prevent attacker from “speaking” the language.

W ⊕ X (DEP)
Stack canaries
XFI

2 Make the language unpredictable.

ASLR
Instruction set randomization

3 Make the language smaller or less powerful.

RET always returns to an instruction after a CALL
Detect unusual call/jump sequences.
Enforce an order in which functions can be executed.
Instruction Set Filters

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
Return Oriented Programming

Motivation

We can’t inject our own code because of W ⊕ X .
We can’t return to system() because of ASLR.

Let’s re-use the application’s code to perform our
computation.

Find useful code snippets (called gadgets) that end in RET.

Stitch them together to perform our computation.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
Return Oriented Programming Example

The stack contains our ROP program.

The stack pointer (ESP) is the new program counter.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
Return Oriented Programming Defenses

kBouncer

Vasilis Pappas, 2012
Winner of Microsoft BlueHat Prize ($200,000)
Use Last Branch Recording to keep history of code path.
When entering Win32 API call, look for ROP-like patterns.

Smashing The Gadgets

Vasilis Pappas et al., 2012
Substitute equiv. instructions (randomizes unintended instrs).
Register re-assignment.
Randomize the order of instructions.
Program does the same thing, but gadgets break.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Background
Attacker Model

Need more rigorous way of evaluating defenses.

Borrow from cryptography: Model it as a game.

Chosen-PC Attack (CPCA)
1 Attacker receives the process’s memory and registers.
2 Attacker sends a list L of N executable addresses.
3 For each address Li , start executing at Li , then just before the

next indirect call or jump, go to Li+1.

Adaptive Chosen-PC Attack (ACPCA)
1 Attacker receives the process’s memory and registers.
2 Attacker selects an address A.
3 Execution starts at A until the next indirect call or jump.
4 Go back to step (1).

These encompass all code reuse attacks.

Even with ACPCA-security, non-control data attacks are
possible.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Instruction Filters
Overview

Disable parts of the instruction set based on context.

Protected shadow stack holding the current filters.

If an exploit is triggered in parse(), INT won’t be available.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Instruction Filters
Experimental Results (Apache httpd binary)

The average number of gadgets that would be allowed by a
function’s instruction filter.

1

1Do not trust this data too much
Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Instruction Filters
Experimental Results 2 (Apache httpd binary)

Random sample of gadget sequences of different length.

Complete: Make call graph complete (jump to any filter)

All: Can traverse any edge of call graph

Reverse: Can only traverse call edges backwards (returns).

2

2Do not trust this data too much
Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Instruction Filters
Experimental Results 3 (Apache httpd binary)

If you could inject machine code, how much of a shellcode could
you execute? Sample: 200 shellcodes from shell-storm.org.

3

3Do not trust this data too much
Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Implementation
Classifying Instructions

4

We filter on the opcode number, because it’s easy and fast.

Instructions are mapped to integer between 0x000 and 0x3FF

Opcodes are either 1 byte, 2 bytes, or 3 bytes:
1 Opcode = 0x??, Number = 0x0??
2 Opcode = 0x0F??, Number = 0x1??
3 Opcode = 0x0F38??, Number = 0x2??
4 Opcode = 0x0F3A??, Number = 0x3??

4Taken from Intel Software Developer’s Manual Volume 2C
Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Implementation
Registers and Memory

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Implementation
New Behaviour

Added Instructions

FLOW n: Push n onto the filter stack.
UNFLOW n: Pop n from the filter stack.
FCHECK n: Assert current filter ID is n.
Privileged instructions for setup and context switching.

Memory between FST and FSB can only be modified by
FLOW or UNFLOW.

Using PEBIL to add filters to ELF binaries.

http://www.sdsc.edu/PMaC/projects/pebil.html

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Implementation
Problems

My implementation doesn’t really work.

This is my fault, not because the idea is bad.

Problem is with the static instrumentation.

Lots of crazy code that needs manual filter exceptions.
PEBIL changes the code in weird ways.

So I just disable the filter for everything that doesn’t work,
which eliminates many of the security properties.

The right place to do this is in the compiler.

But I can show you it stopping an attack...

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Demo

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Analysis
Attacker’s Perspective

Breaks existing exploits with high probability.

What about exploits designed with knowledge of the defense?

Attacker can:

Execute code allowed by the current filter.
Execute UNFLOW n, which pops the current filter off the
stack and enables the previous one (unless the stack is empty).
Execute FLOW n, which switches to a different filter. These
are always at the start of procedures.

If the attacker wants to perform some computation, they have
to search for a sequence of filters that will let it execute, then
find a way to switch into those filters while performing the
computation (all while reusing the application’s code).

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Analysis
Work in progress

Haven’t analysed with respect to CPCA or ACPCA

Implementation is not complete.
Analysis is hard

Depends on program state.
Attacker’s goal needs to be defined.
Need tools to perform analysis.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Conclusion
Future

We need rigorous evaluation of defenses.

We can have defenses that apply to all exploit techniques.

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

Questions?

Taylor Hornby, Michael Locasto Instruction Set Filters and Other Exploit Defenses

